

CG GARAGE PODCAST #271
ALEXANDER SOKLEV

V-RAY GPU TEAM LEAD, CHAOS GROUP

V-Ray GPU is awesomely powerful — and with out-of-core rendering, it’s only going to get
better. Join Chaos Group’s Alex Soklev for a peek behind-the-scenes.

Over the past 12 years, V-Ray GPU has been developed alongside the CPU renderer to take

advantage of increasingly powerful and specialized hardware — and now it’s coming of age.
Joining Chris this week is Alex Soklev, whose passion for ray tracing has propelled him to the

position of Team Leader in Chaos Group’s V-Ray GPU team.

Contents

Why we added Optix

Defining out-of-core

Mipmapping 8K textures

The Holy Grail of GPU rendering

Useful links

Alex’s GTC presentation (requires
registration) >

V-Ray GPU at Chaos Group >

V-Ray GPU/NVIDIA RTX support blog post >

1

https://developer.nvidia.com/gtc/2020/video/s22197-vid
https://developer.nvidia.com/gtc/2020/video/s22197-vid
https://www.chaosgroup.com/vray-gpu
https://www.chaosgroup.com/blog/v-ray-gpu-adds-support-for-nvidia-rtx

Chris Nichols You haven't been on before, which is actually cool to have you on for the first

time.

Alex Soklev No, no. Yeah, I haven't been on.

Chris Nichols But-

Alex Soklev This the first time, so I'm pretty excited.

Chris Nichols Yeah. So, it's cool because you've been doing GPU stuff for, how long have you
been on the GPU team now?

Alex Soklev Well, in the beginning when I started at Chaos there was a small timeframe in
which I wasn't sure which team I was in. But, back then I think the differentiation
was not that good. So, there were no specific teams, just people were helping
each other and trying to do their best to make everything work. Then team
started to-

Chris Nichols Formalize?

Alex Soklev Yeah, formalize here and there. And I think I'd been on the GPU team as long as
it's been there, like day one, I guess.

Chris Nichols Yes. So, that's at least what, six years?

Alex Soklev Five years plus something. Yeah, almost six years. I've been at Chaos for almost
six years now. Next month is my sixth year. Okay.

Chris Nichols Yeah, I just had my six years, so you were just after me.

Alex Soklev Yeah. When did you start?

Chris Nichols November 2013-

Alex Soklev '13-

Chris Nichols ... I guess.

Alex Soklev Yeah.

Chris Nichols Yeah.

Alex Soklev So, I started June, beginning of June, 2014.

2

Chris Nichols Right. Okay. cool. So, anyway, so you were ... it wasn't formal that they had the
GPU team, but it is now, and you're now the head of the GPU team-

Alex Soklev Yeah.

Chris Nichols ... which is a big responsibility. And it's been pretty cool. Let's give people a little
bit of a story of how did you get into programming, how did you end up at Chaos
Group? How did that happen?

Alex Soklev Well, that's a funny story. So, I guess I started programming because I was good
at math, and I was ... after I graduated high school, I was thinking, "What should I
do with my life, and how should I approach stuff, I need to get a job." And since I
was always good at math, I decided, "Well, programming is good for me."

Alex Soklev I never did programming in high school. I came from a language background,
high school. No deep involvement in mathematics or programming or anything
like that, but decided to go for it, and started studying computer science at the
University of Sofia. And I studied like two years, and at the end of the second
year, I didn't like it at all. I thought this was not the thing for me. So, I just quit and
decided I'll go pursue something different.

Alex Soklev I was really into 3D. Ever since high school, I was playing around with Max and
Maya. During the year when I was out of university, I was following tutorials, and
because my dad actually is in the movie industry, he's an electrician.

Chris Nichols Oh, nice.

Alex Soklev I don't know exactly what the term is, I think it's gaffer.

Chris Nichols Yes. But, he basically was in the lighting team.

Alex Soklev Yeah, the lighting team. Yeah.

Chris Nichols Yeah.

Alex Soklev So, he met me with some guys who are doing CG here in Bulgaria. So, I started
following them and trying to learn here and there. And while this was all
happening, some friend of mine from my class at the university told me that
there's this guy that's holding a brand new course at the university called ray
tracing. And they're doing ray tracing. And based on what I've told him, like, what
my interests are and what I like he told me, "You should go there and check this
out."

Alex Soklev So, I went back to university. You could attend this even though you weren't
enrolled this year. And it was actually the best thing that I've seen so far about

3

programming. And I suddenly decided I want to be ... this is what I want to be,
this is what I want to do. So, I-

Chris Nichols So, suddenly you married your 3D interests. Your 3D interests and your computer
graphics interest suddenly found a way together.

Alex Soklev Yeah. And, that's what brought me back to the university. So, I enrolled back next
year, and I graduated.

Chris Nichols Wow, there you go.

Alex Soklev Just when I got back in the university, I had an ... in the year that I skipped, I didn't
do any programming at all. And I was really, really bad at programming back then.
Then I decided to apply to Chaos. I think it was 2011. I went on an interview, and I
sucked a lot. Now when I remember how the interview went, I'm even amazed
that they actually invited me for a second interview a few years down the road
when I applied the second time.

Chris Nichols Wow.

Alex Soklev But I guess the second time's a charm, so, yeah.

Chris Nichols Right. Wow. Okay. All right. So, that's how you ended up ... your interest in
computer graphics led you to ray tracing and programming. So, that was pretty
cool.

Alex Soklev Yeah. And sheer luck. You know Vasko, unfortunately, he's no longer on the team.
He's the guy that held the ray tracing course at the university, and he's the guy
that sparked the light in me.

Chris Nichols Okay. Well, that's fascinating. And that's good because I think what we're going to
try to do in this podcast, is we're going to have a refresher course on what ray
tracing really means, especially for people that can say, talking about GPU ray
tracing, I think that there needs to be a better definition to define here and all the
different problems and issues that are going on there. Obviously, the big thing
now is GPU ray tracing, right?

Alex Soklev Yeah.

Chris Nichols So, a lot of people are talking about its capabilities, et cetera. And Chaos group
has been working on GPU ray tracing for 12 years, 2008 is when we first started
looking at GPU ray tracing. And back then I don't think it was even ... yeah, it
wasn't even with CUDA. I think it was trying to shove it into a shader somehow, or
something weird that we were trying to do. Our very first implementation was not
even through CUDA.

4

Alex Soklev Yeah. The very first implementation was actually in OpenCL. It was the first API
for general-purpose programming that came out. It was the first thing that
allowed you to do general-purpose computing on the GPU. Before that, it was
hacked through shaders. And as soon as OpenCL was out, we started doing ray
tracing on the GPU. And I think it was about a year later that CUDA was released.
So, we naturally brought the two of them together, and we started building a
unified ray tracer that would work on both.

Chris Nichols Right. Well, that's actually interesting. So, we should do a little refresher on what
an API is because that actually ... This is the way we started. We actually did have
two different APIs going for a while. We had the OpenCL version and we had the
CUDA version. And, the idea was that with OpenCL, we were just basically
keeping our options open because, depending on which hardware people wanted
to use, it wasn't necessarily tied to a specific piece of hardware, because CUDA is
tied to the NVIDIA hardware. And the OpenCL API is tied to any hardware
including CPUs. You can use CPUs as well, right?

Alex Soklev Yeah.

Chris Nichols So, that was a big choice. And at some point we abandoned OpenCL, and it took
a long time. We kept it going for a long time. But we abandoned the OpenCL
because, I guess, we just weren't getting the performance or the features that we
were getting from CUDA, is that right?

Alex Soklev Well, sadly there's a ... OpenCL as an idea was perfect. So, it was a portable API,
you could write your programming in OpenCL and it could run everywhere on any
GPU from any maker, even on CPU. It was great in theory. Sadly, in practice, if you
want to be able to attend to everybody's needs, you need to make sacrifices. Like,
you need to cut this corner and that corner in order to suffice everybody's needs.

Alex Soklev And what eventually OpenCL became is a less powerful API than CUDA. CUDA
was very tied to the Nvidia platform. It was very performance, very optimized on
the Nvidia hardware. We were trying our best to keep them both together. But at
one point it just became too much of an effort on our side to maintain OpenCL.
There were just too many features missing that we needed in order to give our
clients the performance that we know we can extract from the GPU. And, this is
eventually what led to our abandoning of the OpenCL platform. Also, there was-

Chris Nichols Yeah, go ahead. I mean, it's also the fact that no one was ... we knew how many
people were using NVIDIA hardware versus using alternatives, right?

Alex Soklev Yeah.

Chris Nichols So, there were very few people, I mean, almost every one of our users was using
NVIDIA. So, there was really no reason why we shouldn't just stick with CUDA the

5

whole time because that's 99.9% of the time, that's what people were using, was
NVIDIA hardware, right?

Alex Soklev Yep, that's true.

Chris Nichols So, yeah, supporting an API that basically would only satisfy 0.1% of our user
base isn't necessarily a good idea.

Alex Soklev As long as it was easy, we didn't mind it, but it was getting harder and harder all
the time.

Chris Nichols So, for a while we were sticking with one API, and then suddenly now we have
another API.

Alex Soklev I guess that's the work of the GPU developers. There's always another API just
around the corner. Just when you think it's getting easier, no, it's not.

Chris Nichols Yeah. So, we still have a very robust CUDA base, right?

Alex Soklev Yeah.

Chris Nichols Right now CUDA is extremely good, it's very feature-rich, and it works really well,
and it's really fast. And, we've added a second one, which is the Optix one, right?

Alex Soklev Yes, this is true.

Why we added Optix

Chris Nichols So, let's explain why we added Optix.

Alex Soklev There's a very, very simple reason actually why we added Optix. As you know, the
last generation of the NVIDIA GPUs, the Turing architecture, brought a very cool
new feature to everybody. It's the RT core. So, the RT core is a piece of hardware
that's inside your GPU, and it's actually a separate processor designed
specifically for ray tracing.

Alex Soklev So, it can do ray-to-triangle intersections, or it can traverse trees for you. And
because it's done in hardware, it's much, much faster than anything you can ever
do with software. And the only way for us to access this new goody was through
the Optix API. There is no direct access to the RT cores through CUDA. So, if you
want to benefit from that speed up that you'll get if you do your intersections in
hardware, then you need to use the Optix API.

6

Alex Soklev And this is why we started writing and rewriting V-Ray GPU over the Optix API.
And this is something that we've been doing for quite a while now. Actually, the
first time we heard that this is going to happen, Optix was version 5.0, I think. So,
we started doing this with Optix 5.0, which is I think more than two years ago,
three maybe, years ago.

Alex Soklev Through the course of time Optix evolved a lot because this is something that
nobody has ever done before. This is a brand new thing, and nobody was sure
what's the proper way to do it. So, when we first brought it in Optix 5.0 it wasn't
perfect yet. So, there was a lot of back and forth. We were very closely partnering
with NVIDIA and sharing our feedback on what we need, what the API would
need, and how it needs to evolve and what needs to change in order to be really
production-ready for everybody out there to use in powerful production software
like V-Ray GPU.

Alex Soklev And, we went through a lot of back and forth. There was Optix 5.0, 5.1 5.2, then
Optix 6.0 came in, 6.1, 6.5. And eventually, we arrived at Optix 7.0, which is the
final version that we are now running on, and we are feature-complete, just as
CUDA is. So, every feature that we have in CUDA is there in Optix as well right
now.

Chris Nichols And that is a ... we should note, that that is a huge effort, like to try-

Alex Soklev Yeah.

Chris Nichols ... to make everything work from one API to the other. That's like basically
rewriting ... designing an entire new car to make it look exactly the same but from
scratch.

Alex Soklev Yeah. So, we basically changed the complete backbone of the render. We had to
revise everything from scratch. And something that we're really proud of is that
we were able to design this and make the whole effort in such a way that
currently, we're using more than 99% of the CUDA codebase for Optix.

Chris Nichols Interesting.

Alex Soklev So, we changed our CUDA code in such a way that ... so, it shares the entire
codebase with Optix right now. So, this is something that would-

Chris Nichols So, you changed both codes?

Alex Soklev Yeah, we had to change both codes.

Chris Nichols You changed both codes, yeah. Wow.

7

Alex Soklev But, we adjusted the CUDA code so it fits Optix in such a way that now they share
the whole codebase. So, in order to support the two of the APIs together, we
actually, it's a normal operation for us. It's easy. Every change you do in CUDA
comes automatically in Optix. And the other great benefit of this is that no matter
what you do, you know that the results you'll get from Optix are exactly the same
as the results you'll get from CUDA.

Chris Nichols Wow. There you go. That's a big deal. That's a really big deal.

Alex Soklev Yeah. It tells people that they can switch from CUDA to Optix at any point, and it
will be safe.

Chris Nichols So, we should note that when we go basically ... if you go into your current
version of V-Ray in Maya or Max or whatever, our current released version of
V-Ray does actually have the Optix option in there, right?

Alex Soklev Most of them do, and if you're on a DCC or a platform that still hasn't gotten the
latest update, which is internally, it's version 4.3, which was for Max, it was
update two, I think, for Maya it was update one. And I know that it's already
shipping for Rhino, Houdini and SketchUp, but all the rest are coming later this
year.

Chris Nichols So, the big thing to note is, what you'll notice is that you'll have an option to
render it in CUDA or render in Optix. It is actually going to give you the same
thing. The really, the only difference between those two options is what hardware
you have that supports it, right?

Alex Soklev Yeah.

Chris Nichols So, if you have new hardware, like a new RTX card, then it is highly recommended,
you just might as well just use the Optix version. The Optix version is what you
should be using for any GPU stuff, right?

Alex Soklev Mm-hmm (affirmative).

Chris Nichols Okay. And then the one thing that the Optix version currently does not support is
adding the CPU as an additional processor. Because, I think the CUDA one does,
but the Optix one does not support that yet, right?

Alex Soklev Yeah. This is actually the only thing that Optix doesn't have, and there is a very
good reason for this. And it's because when you render with CUDA everything is
in our control. So, we build everything, the acceleration structures, the geometry,
everything's in our control. And when we have these acceleration structures, we
don't care who's going to use them, like, the CPU or the GPU. But when it comes
to Optix, we no longer are in control of traversal because it's the RT code that
does the traversal.

8

Alex Soklev So, suddenly we don't have those trees, we don't have access to them, so we can't
just tell the CPU to go and help the GPUs. If we want to do that and enable the
CPU to do work parallel with the GPUs, we need to go through the step of building
the trees on our own just for the CPU. And currently, this is a very
time-consuming step. It's okay to do it when you do it for the GPUs as well, but
now Optix handles that thing, and it does it blazingly fast. And, we are afraid that
if you do that, it will actually maybe decrease performance.

Chris Nichols Right. Because you basically have to write it for Optix, the tree will have to be
written for Optix and then also written separately for the CPU.

Alex Soklev Yes.

Chris Nichols Right.

Alex Soklev Yes. And also it would be probably two different algorithms. The Optix algorithm
for a tree intersection is not open, so we need to match it somehow in the CPU in
order to guarantee that you'll get the same result.

Chris Nichols The same result, yeah.

Alex Soklev So, this is kind of an issue. But what you can do, because the CPU and the GPU
codebase are exactly the same and the CUDA and the Optix codebase are exactly
the same, you can still, for example, if you have an RTX card on your own
machine and you want to offload your render for final frame rendering on a CPU
render farm, you can still use CUDA CPU, like, the hybrid mode for CPU only in
order to exactly match your RTX result.

Chris Nichols Right. So, basically you could do it in RTX and then switch it to CUDA and send it
to the farm?

Alex Soklev Yep.

Chris Nichols Okay. All right. Well, that's actually-

Alex Soklev You can do it locally with RTX and you can send it to the farm using CUDA.

Chris Nichols Yeah. Okay. Well, that makes sense. Okay. So, let's talk a little bit. Obviously, right
now we're all stuck at home doing our thing, and unfortunately, that means you
had to miss the GTC conference. And you were supposed to give a talk there, and
you did give a talk, but you had to give it remotely this time. I watched your talk,
which was excellent. Very good talk-

Alex Soklev Thank you.

9

Chris Nichols And, there were a lot of interesting questions. We should put, you know, for those
of you who want to see it, I think it's free to register for the GTC conference, and
then you can see Alex's talk on there. If not, it may just be online at some point.
But, we'll try to find a way to make sure you guys have a link to it, and somehow
check out Alex's talk because it's very good and it's very concise, which is actually
very-

Alex Soklev Actually there is a link in the forum of V-Ray GPU. So, if you go to Chaos Group
Forums, and you go into the GPU section, you can find the link.

Chris Nichols Perfect. But we also will put it in the show notes for this podcast as well, so
people will have that as well. So, just go to the CG Garage page, and we'll put the
link in there.

Alex Soklev Great.

Chris Nichols Okay. So, a couple of things. One of the big things ... well, let's first talk about ...
let's get a little bit broader. Let's talk about the idea of what people are calling
GPU ray tracing because I think people are being very loose with this term ray
tracing on the GPU. You know what? Actually, no, let's not do that. Let's go back
to V-Ray. Let's go back to V-Ray specifically.

Defining out-of-core

Chris Nichols Let's talk about out-of-core because this is a big thing that you've been dealing
with specifically. You and I have been having a conversation about this. I've been
trying it out, I've been testing it, I've been writing blogs about it. They haven't
come out yet, but I'm still going into this. Out-of-core is a big, big deal. So, let's
explain what that is, and the different levels of out-of-core, because I think that
was something that was very interesting, the way you broke down to me what
out-of-core means at different stages, right?

Alex Soklev Mm-hmm (affirmative).

Chris Nichols But let's first define what out-of-core is. Explain that for us.

Alex Soklev So, out-of-core, in terms of GPU, is the ability to offload some of your memory to
the system memory, the CPU memory in order to make room for more stuff from
the GPU. So, this is a very, very important feature for GPU rendering specifically. It
is something that all the operating systems support by default. So, on the CPU

10

you have out-of-core naturally. It comes with the system. On the GPUs though it
has everything-

Chris Nichols But, it goes to the hard drive.

Alex Soklev Yeah, that's another level of out-of-core. So, it goes from the system RAM to the
hard drive. And from there it can even go somewhere on the network drive where
you have an infinite amount of space. But, every single hop, every single one of
these means order of magnitude, slower access to that memory. So, if you're
using your system RAM, for example, in the CPU, you have 12 gigabytes, 16
gigabytes of RAM, you're doing something that's taking a lot of RAM. Suddenly,
you're out of RAM.

Alex Soklev There are two cases of what’s going to happen in this scenario. One, you'll have
disabled out-of-core. This is an option for you. You can disable it in the system
settings. And when that happens and there is no RAM on the system, your
application will 99% of the time just crash. So, there's nothing to do. You need
more memory, there is not enough memory, the application crashes.

Alex Soklev If you have out-of-core enabled, and this is virtual memory on a regular system, it
will start offloading some of your memory onto the hard drive to make room for
the new allocations that you need, the more memory that you need. The problem
though is that at some point your application may need back access to the
memory that it has offloaded to the hard drive, for which the computer needs to
remove another chunk from the system memory to a different location on your
hard drive to bring the first location back in.

Alex Soklev And this is a very tedious and very slow process, because you need to go to the
hard drive, you need to synchronize, you need to read chunks of memory, you
need to bring them back to the system memory. It's a slow process. So,

Chris Nichols And hard drive is much slower than memory than-

Alex Soklev Much, much slower.

Chris Nichols ... the system?

Alex Soklev Yeah. It's orders of magnitude much, much slower. Even if you're running the
fastest hard drive out there, like the fastest-

Chris Nichols SSD.

Alex Soklev ... SSD on a PCI slot, it will still be an order of magnitude slower. So, you have
probably seen this, when you're out of system RAM your computer just becomes
extremely sluggish, and it's hard to even move your mouse around — but it
doesn't crash, it works. And this is the good thing about out-of-core because for
example, imagine you're running a GPU render overnight, like you're running an

11

animation. And in your animation there's this one frame that would go
out-of-core. It will need more memory than you have on your GPU.

Alex Soklev Instead of crashing at that point, out-of-core would allow you to still render that
frame. It will be slower because you would need to evict some memory from the
GPU via RAM to the system RAM, so you can make room for the additional stuff
that you need on the GPU. But eventually it will render out. And if it's, for example,
just this one frame in the morning, you can come safely to work and know that all
your animation is done and ready. You pay some, probably a few extra minutes
for that render of that specific frame, but the whole thing is done. And this is the
cool part of out-of-core, that it will give you this safety that you know that the
render will come through.

Chris Nichols Right. But it's very ... it's something we've been obviously looking at for a long
time, right?

Alex Soklev Yeah.

Chris Nichols It's challenging because just the idea of adding out-of-core can significantly slow
down your render, even if you don't need the extra memory, right?

Alex Soklev Yeah.

Chris Nichols Just, it's a much more complicated way of looking at things, right?

Alex Soklev Memory access is the fundamental part, probably, of every program. In this case,
you need to replace it. It's a very hard problem. So, if you start with out-of-core in
mind from the beginning, it's probably easy, but V-Ray is, as you said, it started
2008, V-Ray GPU. There's a lot of things in V-Ray GPU right now. It's a
production-ready renderer, it's very complicated, there's tons of features.

Alex Soklev And, just going out-of-core at this stage is very, very hard, and you have to take a
lot of things into consideration. And every change you make could be a potential
disaster to performance. So, we're very careful in how we make out-of-core, how
we make our accesses, how we group requests for a memory, for example.
Everything needs to be very, very carefully selected, and very carefully prioritized
in order to give the performance that you need.

Alex Soklev So, even if you don't go out-of-core because you have changed the backbone, you
have changed basically everything, you can still suffer a performance penalty,
and this is what we're trying to avoid here. We're trying to make it as perfect as
possible, so when you don't need it, you don't pay the extra price for being able to
go out-of-core when you need it.

Chris Nichols Right. Okay. So, let's talk a little bit about what is in memory. Because the most
expensive parts of the memory that happen on a GPU are two things; geometry
and textures.

12

Alex Soklev Yeah.

Chris Nichols So, there's several ways, and it was really cool the way you outlined it to me in
that email that you sent me a few months back. It was like, "There are several
ways to think about it. One is, on-demand memory." Where you load things slowly
as you need them only at the level that you need them for that specific purpose,
which means, let's say you don't have out-of-core, the thing you can do, let's say is
like, I just load everything whether I need it or not. Every resolution in every piece
of geometry or whatever, and then it will render, because then I just have
everything in memory. But, you don't necessarily have that luxury because GPU
memory is expensive, right?

Alex Soklev Yeah.

Chris Nichols So, you do something that's called on-demand loading, right?

Alex Soklev Yeah.

Chris Nichols And I think we've done it for ... we've had that for a little bit on the texture side of
things, right?

Alex Soklev Yeah. We've actually had it for a few years now.

Chris Nichols So, explain that, because it's really pretty simple if you think about it. But go
ahead and explain how that works on the texture side.

Alex Soklev It's a great feature to have, and it's something that we will extend to out-of-core
later on. So, what on-demand textures is, as you said yourself, when you start
rendering, you need access to all that data. For example, when a ray hits a
surface, it needs to evaluate the color, input the color, it needs all the vectors that
this specific material needs. And because in the beginning of the rendering, you
have no idea what you're going to need in the scene, you just load everything.
And, you loaded all the different resolutions and mipmap settings and whatnot.

Alex Soklev And this can be really, really expensive on the VRAM. People are constantly using
a ton of 8K textures and all those textures, when expanded in memory, take a lot
of RAM. And as you said, VRAM is precious because you can't upgrade it. You
can't just put in more VRAM. What on-demand textures does is it's a mechanism
that allows V-Ray to start rendering without uploading any textures to the GPU. It
just uploads placeholders. So, tiny descriptions of what this texture is so that
when a ray, during intersection, hits a material, it can request, from the CPU, the
texture it hit.

Alex Soklev And, not only it will do a request for the specific texture, but now that you know
exactly how far away you are from the camera, you know how much the ray has
dispersed, and you can take a lot of extra information because you're actually at

13

runtime, and you're exactly at this point at this hit. You'll have all the data you
need so you can make a request for a specific level of the texture. So, you don't
need the whole thing, you can just load a smaller piece of it, then you can filter it,
or pre-filter a tile on the CPU so you can just get exactly what you need on the
GPU, not the whole thing.

Alex Soklev And this happens for every ray, so essentially you only load the textures that you
actually need, not all of them. And you can downscale them to exactly the
resolution you need, not the full size. So, if you're looking at the texture from
close-up, it will be absolutely full size, but if you look it from a really, really long
distance, it will be just a small piece of filtered, blurred texture that would have
absolutely no visual difference from the whole thing, but it will save you so much
memory. So, I've seen scenes go down from tens of gigabytes of textures down
to single gigabytes, just one, because of this texture.

Mipmapping 8K textures

Chris Nichols Well, that's the thing ... Basically what you're saying is people can be lazy and
inefficient, and make everything 8K textures, and it doesn't matter anymore, right?

Alex Soklev Yeah.

Chris Nichols Because basically we'll just load a resolution ... we'll resize all your textures down
to multiple levels, which are called mipmaps, right?

Alex Soklev Mm-hmm (affirmative).

Chris Nichols And we'll load the resolution that we actually need for the renders. So, you don't
say, "Ooh, I need to make it 2K because I'm worried about RAM". Don't worry
about it. Just make it all 8K if you want to, 16K it doesn't matter, that's all the disc
space you need. But, you can still basically do that. Now, this is an important part
of on-demand, because what you basically outlined to me, which is very
interesting, is that it'll load it in, but it won't unload it.

Alex Soklev Yeah.

Chris Nichols That's the thing. That's the new thing.

Alex Soklev That's the difference, yeah.

Chris Nichols Okay. So, let's explain that.

14

Alex Soklev So, with on-demand, you can take stuff in, upon request, but there is no
mechanism to offload things. So, this is what we're actually working on right now.
So, when you implement the eviction, the possibility to throw things away, now,
this is the place where you go out-of-core. But, it's a hard thing to do because
there's a lot of issues and problems that come with eviction. So, whenever, for
example, you hit something you need, for example, a piece of geometry that you
didn't have now, you need to make room on the GPU for that piece of geometry.
But you need to throw something out because there is no space. The decision,
what you should toss out is very important because it could dramatically affect
performance. Also, you need to make sure that nobody else is currently using
this. And on the GPU, this is hard because, for example, on the CPU you have like
eight or 16, or even, let's say you have a very powerful Xeon processor, you'll have
like 100 threads, but on GPU you have 3,000 and more, and you may have more
GPUs. So, you need to make sure that nobody needs this-

Chris Nichols So, you have to check with 3000 threads and say, "Are you sure you're not using
this?"

Alex Soklev You have to make sure that nobody needs this. You have to do this without
locking everybody, because everybody needs to work, and you have no option to
tell anybody, "Stop working, I need to check something." So, everything happens
at runtime. So, all those threads are just humming there, rendering, and you need
to be able to throw stuff in, throw stuff out, bring stuff in. And this is the really
hard thing.

Alex Soklev Because, for example, with on-demand, you know that when you hit, for example,
a piece of geometry that it wasn't there, you know that it wasn't there for
everybody. And when you bring it in, now it's in for everybody. And you know that
it's going to stay there forever. But, if you evict it at some point, now you have to
take extra precautions, because something that was there just a second ago can
suddenly go missing. And you need to handle that case. This is much, much
harder than it sounds, and this is why we're taking our time to make it perfect.

Chris Nichols Yeah. Well, this is a very big challenge. I know it's a very big challenge because,
obviously, this is why we've been working on it for so long. But, it is an interesting
problem, because basically, when you go through the bus, when you go from one
kind of memory to another kind of memory, you want to go in that area as few
times as possible for a shorter time as possible, right?

Alex Soklev Yeah.

Chris Nichols And so, predicting when you can get in and out is the big issue, right?

Alex Soklev Well, when you need to go out, you need to go out. So, you're going to pay the
price from going through the bus from one memory to another, that's a given. But
you can make this worthwhile. So, you can cram as many requests, for example,

15

into that single go-back-and-forth as possible in order to keep performance up.
You can't simply do this transaction from one bus to the other every single time
you have a request. You need to gather those, you need to issue requests at
specific intervals, for example. So, you make sure that the performance is
optimal so you can utilize this bus as much as you need to, otherwise you will
suffer.

Alex Soklev And, another thing in out-of-core that is very, very important, and I think a lot of
people when they talk about out-of-core, they're just thinking about what happens
when they go out of memory. And what's the price that I'm going to pay once, for
example, I have a 10 gigabyte GPU, I have 12 gigabytes of scene that needs to go
in. But, something a lot of people, I think, overlook, and this is a very, very
important thing, is that, are you sure that you need all those 12 gigabytes of your
scene?

Alex Soklev A very important aspect of out-of-core is, for example, it would allow you to
render scenes, like 100 gigabyte scenes, into your 10 gigabyte GPU. If you were
using a huge scene, like a huge city, with skyscrapers and whatnot, and your
camera is positioned in a single room in one of those skyscrapers, you don't need
to go and simplify your scene, and delete whatever you don't need in order to
render it so you can fit in memory. With out-of-core you can just render that scene
straight out, and the renderer will automatically load only what it needs.

Alex Soklev So, it will start even without geometry, even without textures, just boxes and
placeholders for structures. And whenever a ray hits something that it needs, it
will load it into memory. But for example, in this case that I just gave, you are in a
single room, so you're most probably going to need everything that's in the room,
and everything that you see directly outside through the windows and nothing
else. So, you won't load the whole scene, the whole city, it would only load what
you can see. And this way, your scene might fit in your memory, and you will
never go out-of-core in the first place.

Chris Nichols So-

Alex Soklev You will utilize only-

Chris Nichols So, but isn't that basically ... But it is on-demand then, right? Basically it's-

Alex Soklev Yeah, this is on-demand geometry loading.

Chris Nichols Okay. All right. Which is fine, which is great. So, how does on-demand geometry
loading work? Because you're basically doing the same thing as the mipmapping,
right?

Alex Soklev Yeah.

16

Chris Nichols So, you have something that's going in that way, but we have different ways of
doing things. So, you mentioned ... and people who have used V-Ray for a long
time have seen the term static memory versus dynamic memory, which is, I'm
sure where we're going to go here. Static geometry or dynamic geometry. So, let's
define what that is, and what is the advantage of one over the other? Because I
think that's how it all starts, right?

Alex Soklev Yeah. So, from the beginning of V-Ray, there's been two types of geometry. So,
there's static geometry and there's dynamic geometry, or at least that's what we
call them. So, they're very different while they do serve the same purpose. So, it's
all geometry, it's just the acceleration structure that V-Ray intersects in order to
find in the fastest way possible, but hit along the distance of the ray so we can
share that. There are many ways, but there are two ways that we intersect with
geometry.

Alex Soklev One is when you put all your triangles into one and the same acceleration
structure. So, all your meshes, you group them together and you build one huge
acceleration structure, so all the triangles. This is what we call static geometry.

Chris Nichols One big tree.

Alex Soklev Yeah, one big tree over all your triangles, across all your meshes. This is what we
call static geometry. So, all your static geometries in V-Ray will go into one single
tree. The opposite to this is to have a separate tree for every mesh that you have,
and then you build a secondary tree on top of the first one, which would just
bounce those mashes. It's called a BVH tree, a bounding volume hierarchy.

Alex Soklev The difference between the two is that static tree, when you build one single
acceleration structure over all your triangles, is generally faster than the other
one. It's not a big difference, but it's noticeable, especially on bigger scenes.

Alex Soklev So, why do we have dynamic geometry? Well, usually people like to fiddle with
their scenes, like in interactive rendering. You start your render, you build your
acceleration structure, everything's working perfectly. And now you want to move
a certain piece of geometry. But in the static tree, because everything is in one
place, if you move one piece of geometry, you'll have to rebuild the whole tree
once over again, even if you just moved it, it's a change in the tree and you have
to rebuild the whole thing.

Alex Soklev And because there's probably millions and millions of triangles in that, it's
expensive. You need to wait for a few seconds for this whole thing to rebuild. On
the other side, you have dynamic geometry where every single geometry is in a
tree of its own. So, if you move a tree over, a piece of geometry over, you don't
need to rebuild everything, most probably you will have to rebuild only the tree
that this geometry represents, which is a smaller thing, like a few hundred
thousand or millions of polygons. And you'll have to rebuild the BVH itself, the

17

secondary tree on top of the first one. But it's also very, very small because
there's as many nodes in it as there are nodes in your other scene.

Chris Nichols Right.

Alex Soklev So, this is very, very fast to update. And this is why we have both of them,
because one of them is good for interactive rendering, the other one is good for
final rendering.

Chris Nichols Right.

Alex Soklev And, also the problem of the static tree is that it doesn't pull out instancing. So, if
you have a huge piece of geometry, and you want to instance it a few times in the
static tree you have to actually copy it a few times. But if you don't want to pay
that price, you need to be able to just reuse the geometry. And, in this case, you
have to make it dynamic, you have no other choice.

Alex Soklev So, in out-of-core from where we started, you need to be able to rapidly remove
things from your scene and bring them back in. And, for that reason, static
geometry is not good to have, because every time you need to remove a few
triangles from your scene, you have to rebuild the whole tree again and again and
again, and this will kill performance right there.

Alex Soklev So, you have to use dynamic geometry even when you go out-of-core. And this is
actually something that we are doing. So, if you enable out-of-core, we will no
longer put any of the measures in static geometry, everything will be dynamic.
And this is another thing that we're doing. We're trying to optimize our dynamic
trees as much as possible, so there's no performance gate. Because, as I said, in
static geometry, it's a little bit faster.

Chris Nichols But, you're taking the hit for convenience, like, that's okay.

Alex Soklev Yes.

Chris Nichols It's a little bit faster, but you're able to ... you can do evictable memory and all that
other stuff, right?

Alex Soklev Yeah.

Chris Nichols Okay.

Alex Soklev And also there's a few tricks up our sleeve, some things that we're doing currently
in V-Ray that we'll do with out-of-core as well.

Chris Nichols Okay. But let's bring back the idea. So, now that we've looked at the geometry way
of doing things, it's basically like a bunch of mipmaps. So, you have a master tree,
which is your BVH tree, right?

18

Alex Soklev Yeah.

The Holy Grail of GPU rendering

Chris Nichols And then you just load what you need on-demand into your scene and then, et
cetera, you're good to go. Very similar to the mipmap level of textures. However,
we are also looking at evicting things because some people are saying that they
do "out-of-core," but really what they're doing is just on-demand. They're not
actually doing evictable memory. That's like what we are defining as out-of-core
is when we actually have evictable geometry in that situation, right?

Alex Soklev Yup. So, the difference between the two is, for example, with the skyscraper
scene and the city scene that I said. So, if you have on-demand geometry loading,
which is just a part of what out-of-core is. So, out-of-core has on-demand
geometry loading, but it has much more.

Alex Soklev So, if you have on-demand geometry and you're, for example, doing interactive
session in this specific scene with the skyscraper and stuff, you can start
rendering, and everything that's in the scene, and everything that's outside
through the window will get loaded, and it'll fit in your GPU, for example. But, if
you try to move your camera around, and you want to go outside of this room
during the session, you'll say, "Let me start hitting more stuff," and you'll need to
put more stuff in the memory, more trees, more meshes, everything, and
suddenly you're out of memory.

Alex Soklev And, if you just had on-demand loading at this point, you'll crash because there's
no way you can remove stuff from the GPU in order to make room for the new
stuff, and with out-of-core you can. And another thing, by the way, that out-of-core
is very good at is this specific scene where you're in one room, for example, in
your set and you move on to another room.

Alex Soklev Now, you can't fit both rooms in the memory, but you're never in both rooms at the
same time. So, when you go in the other room for a few cycles, you will be
out-of-core because you need to remove all the stuff from the first room and load
everything in the second room. But, once you are in the second room and you
evict everything from the first room, you're no longer out-of-core again. Everything
fits in memory and you can be fast. And this is the Holy Grail, this is what we're
after, this is what we want.

Chris Nichols Yeah. It's an interesting thing, but you know, what's also amazing is that the GPUs
have gotten faster, obviously, as we know, and they've gotten new special cores

19

like the new RT cores, et cetera. But they've also gotten a huge amount of
memory recently. The fact that your standard gaming card can have 11 gigs or 12
gigs of memory is pretty darn good.

Alex Soklev This is pretty darn good, but then you can look at the professional tier cards when
you have stuff like the RTX 8000, which gets 48 gigabytes of memory. And you
can actually NVLink those together-

Chris Nichols Get 96 gigs.

Alex Soklev Things are getting really, really out of hand. And can you imagine going
out-of-core with 96 gigs?

Chris Nichols Well, I'll tell you what? I've tried, and I had a massive scene, and I was like, "Okay,
I'm really going to test this NVLink to see how far ..." and it was this massive,
massive scene. And, I was sure because on the CPU, it took like over 140 gigs or
something like that. It was a ridiculous amount.

Chris Nichols And so, I was like, "Well, this is great, because now I have 96 gigs of memory on
the GPU. So, I'm going to be able to do this. I'm going to be able to see how it's
going to go out-of-core. The problem was that because I implemented the
on-demand textures, you know, the mapping textures. Turns out I only needed 39
gigs of memory on the GPU to render. So, I couldn't even go out-of-core on one of
them.

Chris Nichols So, the way we deal with memory, I mean, obviously memory is so important on a
GPU, the way we've dealt with it for a long time, is to be really, really smart about
how we put it into memory. So, we're already smart in some ways, and the
on-demand is going to be a big thing. But even so, even if you start to run out of
memory, we still have the ability, with evictable stuff, to continue to render no
matter what, right?

Alex Soklev Yeah.

Chris Nichols It won't crash.

Alex Soklev Yeah. This is the goal. We want to make the renderer so resilient, that no matter
what you toss at it, it will produce a result, it won't crash. It would render it out,
maybe it will take longer if you really, really stress it, like if you have a few
gigabytes and you want to render hundreds, yes, it could be slow. But, the goal
here is to make it resilient and handle anything.

Chris Nichols Right. Okay. So, I have one more thing. Alex, are you part of the Lavina team at
all? Are you working on Lavina?

Alex Soklev No, not at all. I'm familiar with the people working on Lavina, but I'm not on the
team.

20

Chris Nichols I'm just going to ask you to chime in, knowing that you're not actually on the
team, but Lavina for us is our real-time ray tracer. What I want to talk about here
is, there is something very specific that we are doing that other people who are
claiming to have real time ray traces are not doing. And that is that we are doing
100% ray tracing, no rasterized rendering at all.

Alex Soklev Yep, that's true.

Chris Nichols So, one, while this sounds, like, okay, so what's the difference? As long as it looks
good, it's good. But there's one thing specifically that we can do that I want to
figure out if you can find a good way to explain it. We can load a huge amount of
geometry compared to rasterized rendering, and render that in real time. And it
almost doesn't even matter. You can just keep throwing more and more and more
geometry, and it doesn't slow it down. How is that possible, and why is that only
possible with fully ray traced scenes compared to rasterized scenes?

Alex Soklev So, that's actually the definition of ray tracing.

Chris Nichols Oh, okay. There we go. Go back to your school work, right?

Alex Soklev Yeah. Ray tracing and rasterization are two very different techniques for drawing
on the screen. So, rasterization was invented with the goal to render a lot of
pixels on the screen. So, it's pixel-oriented, let's say. So, it's very fast at drawing
pixels, and there's a fixed pipeline, there is hardware along the way. People have
done a lot to optimize rasterization over the years. And there's a lot of, as I said,
hardware involved in it that's why it's blazingly fast.

Alex Soklev But essentially, in rasterization, when you want to draw a pixel, you have to
linearly go through all the triangles in order to find which triangle and you're
seeing maps to that big pixel, so you need to render it. So, for every pixel you
need to go linearly through every triangle out there.

Chris Nichols Every single one?

Alex Soklev Yeah. And when there are many triangles in the scene, rasterization starts to
suffer. And this is why in games, for example, you're limited by polycount, and
everything that's using rasterization is limited by polycount because your
operations are linear. For every operation, you need to go through every single
triangle to check. While in ray tracing, you have acceleration structures, you have
trees. So, when you have a ray and you want to find which triangle it hits, you just
can divide your triangles into two big boxes, like put them into two boxes and
check whether your ray intersects any of the boxes.

Alex Soklev So, if it intersects the first one but doesn't intersect the second one, you can
directly eliminate half of your scene. And this process repeats the second time
you remove half of what's left of your scene, and then you remove the half of

21

what's left of your scene. If you have 1,000 triangles in just 10 steps, you can find
the one that you're after. And in rasterization, you need to do 1,000 steps.

Alex Soklev Now, rasterization is fast and because it does that in hardware, and up to this
point ray tracing had to do it in software. But now with Lavina and with RTX, you
can do that in hardware as well. So, you have all those triangles, but you can
intersect them blazingly fast.

Chris Nichols Interesting.

Alex Soklev In Optix, something that Optix also does, it can compress the geometry, it can
reduce the memory footprint on the geometry and expand it in hardware later. So,
it can actually take less memory than rasterization and be faster than
rasterization. This is why you can put so many triangles there and have real time
performance.

Chris Nichols That's amazing. Okay. Now, we should also note that these RT cores are the first,
these are the beginning of them. These are the first generation of this, right?

Alex Soklev Yeah.

Chris Nichols So, we're at the beginning of ray tracing, and that is going to get faster and faster
from now on, right?

Alex Soklev Yup. It'll definitely be faster. And, the interesting thing here is that ray tracing is
comprised of two parts. There's tracing and there is shading. So, if you just
remove the tracing, you're still left with the shading. So, if your scene, for
example, takes one hour to render, 50% of the time is tracing, and 50% of the time
is shading.

Alex Soklev If you make intersections so fast that it's free, you're still left with a 30 minutes
render, because you still have to pay the price for the shading. But, I am very
optimistic that now that ray tracing is so fast and intersection ray tracing is so
fast, there's a lot of good things for us in the future for shading. So, the next thing
to do is make shading fast.

Chris Nichols Okay, that's good. That's good to know. Now, let's talk about one more thing. On
these things, especially in video games, you're seeing real time ray tracing, right?

Alex Soklev Yeah.

Chris Nichols And they're really, basically all they're adding is just reflections on top of
rasterization. But what they're really doing is you have to render it twice now. You
have to render it as a rasterized version and then put ray tracing on top, right?

Alex Soklev This is true, but for game engines it's not a new thing, because they still had to
render twice the reflections. And even though they had to render twice, so they do

22

one pass without the reflections, and then they do a second pass where they just
position the camera at the location of the mirror, for example, so they can see
what's on the other side so they can blend them both together. This is how
reflections were done before in games.

Alex Soklev For every bounce you had to reposition your camera or render a new scene, and
then you had to reposition the camera or render a new scene. So, this is very, very
expensive. You can't do it all the time, and you bet ... for every mirror, actually
you'd have to report every mirror, and never reflect the surface.

Alex Soklev So, you have to be very careful what's reflective in your games and what's not.
And now you can do it just like that because it's ray tracing. This is what Ray
tracing is all about.

Chris Nichols But if you did fully ray traced, and you just don't even have to worry about
anything, then everything is just one geometry, one thing, et cetera, right?

Alex Soklev Yeah. And with games they also need to maintain a steady FPS with all that going
on. So, for example, you're not doing full ray tracing, you're doing ray tracing but
you're also doing rasterizations for your game. And you're engaging the hardware
in two different aspects here. It's already stressed out enough with rasterization,
so you don't have a lot of room for ray tracing out there.

Alex Soklev So, they're very, very careful on how much they ray trace, what they do with ray
tracing. Actually, instead of doing full ray tracing, they do just a few samples in
order to sample, for example, the reflection and have a general idea of how it
should look. And then they apply denoising and all that stuff to recreate the rest
of the image that they don't have in order to provide the visual feedback in real
time. While with ray tracing, you just fully go all in with ray tracing on a GPU and
you can do everything.

Chris Nichols Yes. And that's a big difference, I think. People should realize what those
differences are, because when we're looking at real time ray tracing, real time ray
tracing for us is fully ray traced. We are a ray tracer, we don't ride a rasterized
engine. So, we are going fully ray traced in Lavina, and that's a big difference. And
that's why we can do huge amounts of geometry, much more than any kind of
rasterize engine can do, as well as put in global illumination, real reflections, real
glossy reflections and everything else, and it looks really good.

Chris Nichols So, this is cool. Well, listen, Alex, this has been really interesting. And I'm very
excited about to know where out-of-core is going, and the fact that it's coming.
And you're able to talk about it at GTC, we'll make sure to put the link in the show
notes for that. And I'm always happy to check in with the GPU team and see
where that's going because that's always a big story for us.

Chris Nichols But, I really appreciate it. But, we will definitely have you back on to continue
talking about this, because this is always something that I'm fascinated with. And

23

when we talk about pure Ray tracing, it's like, "Huh." Yeah, you really start to think
about what the implementations are, and how cool ... It is really cool technology.
And it was fun to hear your story about like, you weren't really interested in
programming until you finally figured out, "Ray tracing, this is cool."

Alex Soklev Yeah, definitely. It's the coolest thing out there.

24

