A Practical Stochastic Algorithm for Rendering Mirror-Like Flakes Supplementary Document

Asen Atanasov Vladimir Koylazov Chaos Group

α	0.01	0.1	0.4
Jakob et al. (Beckmann, $\gamma = 1^{\circ}$)	19s	631s	1945s
Jakob et al. (Beckmann, $\gamma = 5^{\circ}$)	18s	49s	170s
Our method (Beckmann, $\gamma = 1^{\circ}$)	4s	8s	10s
Our method (Beckmann, $\gamma = 5^{\circ}$)	6s	8s	10s
Our method (GGX, $\gamma = 1^{\circ}$)	5s	9s	9s
Our method (GGX, $\gamma = 5^{\circ}$)	6s	9s	9s

Figure 1: A comparison between Jakob et al. and our method for $N=2\times 10^7$ and distribution width α . Variance-based image sampler with a fixed threshold is used to render 200×300 region of the metal plate on Intel Core i7-980X, 3.33GHz, 6-core machine.

Figure 2: Stochastic flakes material with flake colors, sampled from 64 element color table. The table is spanning hue from 0° to 360° for a fixed saturation=1 and lightness=0.5 in HSL color space. The corresponding parameters are 4×10^{7} and $\alpha_{GGX} = 0.09$ (left image), and 16×10^{7} and $\alpha_{GGX} = 0.04$ (right image).

Figure 3: Examples of flakes with random colors, sampled from two different color tables (top row). The corresponding images for $N=2\times 10^7$ (middle row) and $N=8\times 10^7$ (bottom row). Parameters $\gamma=1^\circ$, $\alpha_{GGX}=0.04$ were used.

Figure 4: A comparison between the smooth BRDF and our stochastic flakes BRDF for the Beetle toy and Sparkling snow scenes. The images are rendered using variance-based image sampler with a fixed threshold in 960×540 resolution on Intel Core i7-980X, 3.33GHz, 6-core machine.

0.25

Sparkling snow (flakes)

 10^8

 0.4°

95s

Figure 5: A photograph of sparkling snow (top) and sparkling snow material, comprised of sub-surface scattering base layer, stochastic flakes material coat and a bump map for the fine surface detail (bottom). The flakes material has $\gamma=3^{\circ}$ and GGX microfacet distribution with a very high width parameter $\alpha_{GGX}=0.64$.