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Abstract

This document consists of detailed derivation of the equations used
in the implementation of the GTR/GGX Microfacet reflection model in
V-Ray 3.20

1 Table of symbols

D Microfacet distribution function
G Bidirectional shadowing-masking function
G1 Monodirectional shadowing function
i Direction from which light is incident
o Direction in which light is scattered
m Microsurface normal
n Macrosurface normal
θm Angle between m and n

θv
Angle between v and n,
where v could be either i or o

χ+ (a) Equal to 1 if a > 0 and zero if a ≤ 0

2 Introduction

The Smith G approximates the bidirectional shadowing-masking as the separa-
ble product of two monodirectional shadowing terms G1:

G (i,o,m) ≈ G1 (i,m)G1 (o,m)

where G1 is derived from the microfacet distribution D as described in Appendix
A in [2]. For the given GGX distribution with roughness parameter α:

D (m) =
α2χ+ (m · n)

π cos4 θm(α2 + tan2 θm)2
(33*)
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they derive the following equation for G1:

G1 (v,m) = χ+
(v ·m
v · n

) 2

1 +
√

1 + α2 tan2 θv
(34*)

Those equations are sufficient until control over the tail fall off of the reflec-
tion is required. This is enabled via Generalized-Trowbridge-Reitz, or GTR
distribution defined in [1]:

DGTR (θh) =
(γ − 1)(α2 − 1)

π(1− (α2)1−γ)

1

(1 + (α2 − 1) cos2 θh)γ
(1**)

Whenever we are using equations from the referenced papers we will stick to
their original notation to avoid confusion. This is the reason the equations (33*)
and (1**) are slightly different. However in our derivations below we are going
to use just DGTR without any parameters and θ without any subscripts.

In [1] are given the distribution DGTR (θh) and the sampling equations for
γ ≥ 0. When γ = 1 there is a singularity and limit for γ → 1 is used. It is
also shown that when γ = 2 they get equivalent results to GGX distribution
in [2]. However no derivations for G1 for γ 6= 2 were made. In the next section
we derive an approximation for computing G1, which we measured to give less
than 0.1% error compared to a numerical Monte Carlo solution.

3 G1 approximation derivation

Given DGTR our goal is to derive an equation for G1 for γ ≥ 0. Below is a list
of the equations from [2] used in our derivation:

P22 (p, q) = D (m) cos4 θm (42*)

tan2 θm = p2 + q2 (*)

P2 (q) =

∫ ∞
−∞

P22 (p, q) dp (43*)

µ = |cot θv| (44*)

Λ (µ) =
1

µ

∫ ∞
µ

(q − µ)P2 (q) dq (48*)

G1 (v,m) = χ+
(v ·m
v · n

) 1

1 + Λ (µ)
(51*)

Given (1**) we plug it successively in (42*), (43*) and (48*):

P22 (p, q) =
(γ − 1)(α2 − 1)

π(1− (α2)1−γ)

cos4 θ

(1 + (α2 − 1) cos2 θ)γ
=

=
(γ − 1)(α2 − 1)

π(1− (α2)1−γ)

cos4 θ

(sin2 θ + cos2 θα2)γ
=
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=
(γ − 1)(α2 − 1)

π(1− (α2)1−γ)

(cos2 θ)2−γ

(tan2 θ + α2)γ

Using (*) gives cos2 θ = 1
1+p2+q2 and thus we get the following equation for P22,

P2 and Λ:

P22 (p, q) =
(γ − 1)(α2 − 1)

π(1− (α2)1−γ)

(p2 + q2 + 1)γ−2

(p2 + q2 + α2)γ

P2 (q) =
(γ − 1)(α2 − 1)

π(1− (α2)1−γ)

∫ ∞
−∞

(p2 + q2 + 1)γ−2

(p2 + q2 + α2)γ
dp

Λ (µ) =
(γ − 1)(α2 − 1)

µπ(1− (α2)1−γ)

∫ ∞
µ

∫ ∞
−∞

(q − µ)(p2 + q2 + 1)γ−2

(p2 + q2 + α2)γ
dpdq (1)

Unfortunately we couldn’t derive solution in closed form for Λ for an arbitrary
γ. So we decided we

• try to derive closed form solution for a certain values of γ

• plot all G1-s as height fields depending on µ and α

• based on the visual results, judge if it’s worth interpolating for intermedi-
ate values of γ

• pick an interpolating method based on rendering results

• estimate the error between interpolation and Monte Carlo numerical so-
lution

Using Mathematica we derived closed form solution for γ = 0, 1, 2, 3 and 4.
For Mathematica code see files G1.nb and G1 1.nb.

3.1 Deriving G0
1

For γ = 0:

P 0
22 (p, q) =

1

π(p2 + q2 + 1)2

P 0
2 (q) =

1

2(q2 + 1)3/2

Λ0 (µ) =

√
µ2 + 1− µ

2µ

G0
1 (µ) =

2µ√
µ2 + 1 + µ

=
2

1 +
√

1
µ2 + 1
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3.2 Deriving G1
1

For γ = 1 we used

DGTR1 (θh) =
(α2 − 1)

π logα2

1

(1 + (α2 − 1) cos2 θh)
(4**)

shown in [1].

P 1
22 (p, q) =

α2 − 1

π(p2 + q2 + 1)(p2 + q2 + α2) log(α2)

P 1
2 (q) =

1

log(α2)

(
1√
q2 + 1

− 1√
q2 + α2

)

Λ1 (µ) =

√
µ2 + α2 −

√
µ2 + 1 + µ arcsinh(µ)− µ log(µ+

√
µ2 + α2)

µ logα2

G1
1 (µ) =

µ logα2√
µ2 + α2 −

√
µ2 + 1 + µ arcsinh(µ) + µ logα2 − µ log(µ+

√
µ2 + α2)

In the implementation the term forG1
1 has been further simplified using arcsinh(z) =

log(z +
√
z2 + 1), logarithmic identities product and quotient, and setting A =√

µ2 + α2 and B =
√
µ2 + 1:

G1
1 (µ) =

µ logα2

A−B + µ log
(
α2(µ+B)
µ+A

)
3.3 Deriving G2

1

For γ = 2 the derivation was done only to see if we will get the same results as
in [2]:

P 2
22 (p, q) =

α2

π(p2 + q2 + α2)2

P 2
2 (q) =

α2

2(q2 + α2)3/2

Λ2 (µ) =

√
µ2 + α2 − µ

2µ

G2
1 (µ) =

2µ√
µ2 + α2 + µ

=
2

1 +
√

α2

µ2 + 1
= (34*)
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3.4 Deriving G3
1

For γ = 3:

P 3
22 (p, q) =

2α4(p2 + q2 + 1)

π(α2 + 1)(p2 + q2 + α2)3

P 3
2 (q) =

α4(α2 + 4q2 + 3)

4(α2 + 1)(q2 + α2)5/2

Λ3 (µ) =
3α4 + 2µ(µ−

√
α2 + µ2) + α2

(
1 + 2µ

(
µ−

√
α2 + µ2

))
4(1 + α2)µ

√
α2 + µ2

G3
1 (µ) =

4(1 + α2)µ
√
α2 + µ2

3α4 + 2µ(µ+
√
α2 + µ2) + α2

(
1 + 2µ

(
µ+

√
α2 + µ2

))
In the implementation the term for G3

1 has been further simplified by regrouping

and setting A =
√
µ2 + α2 and B = α2 + 1:

G3
1 (µ) =

4BµA

α2(3α2 + 1) + 2µB(µ+A)

3.5 Deriving G4
1

For γ = 4:

P 4
22 (p, q) =

3α6(p2 + q2 + 1)2

π(α4 + α2 + 1)(p2 + q2 + α2)4

P 4
2 (q) =

3α6(8q4 + 4α2q2 + 12q2 + α4 + 2α2 + 5)

16(α4 + α2 + 1)(q2 + α2)7/2

Λ4 (µ) =
15α8 + 3α4 + 8µ3(µ−

√
α2 + µ2) + α6(6 + 24µ2 − 8µ

√
α2 + µ2)

16(α4 + α2 + 1)µ(µ2 + α2)3/2
+

+
4α2µ(−2

√
α2 + µ2 + µ(3 + 2µ(µ−

√
α2 + µ2)))(α2 + 1)

16(α4 + α2 + 1)µ(µ2 + α2)3/2

In the implementation the term for G4
1 has been simplified by regrouping and

setting A = 8α4 + 8α2 + 8 and B =
√
µ2 + α2:

G4
1 (µ) =

2AµB3

Aµ(B3 + µ3) + 3α2(α2(5α4 + 2α2 + 1) + 4µ2(2α4 + α2 + 1))
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4 Plotting G0
1, G

1
1, G

2
1, G

3
1, and G4

1

Using the derived equations in Section 3 we used Mathematica to plot them.
For the plot shown here we set α ∈ (0.1, 0.5) and µ ∈ (0, 5):

Figure 1:

All height fields converge to G0
1 when µ→ 1 and α→ 0.

5 Interpolation methods and error

First we tried linear interpolation but we got bad looking results (especially
for γ slightly less than 1), where ‘bad looking results’ mean quite a big visual
difference for very little change of γ. Then we tried spline interpolation, we were
satisfied with the results and this is what we finally used in our implementation.
We finally compared the interpolated results with numerical Monte Carlo results
and we get ca. 0.1% difference - G1 returns values between (0, 1) and the mean
difference was 0.001.

6 γ > 4

In the current implementation γ is clamped up to 4. Initially we decided we
can ignore higher values since the rendered results seemed fine and we couldn’t
derive equations for γ > 4. Moreover values greater than 10 are impractical for
the GTR/GGX. However later we succeeded and bellow is a plot for

∣∣G4
1 −G10

1

∣∣
multiplied 10x with α ∈ (0, 1) and µ ∈ (0, 2):
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Figure 2:

From the plot we can observe that the biggest difference is in µ ∈ (0, 1) and
it s up to 0.3. It is not as negligible as we thought but since we are happy with
current rendering results and the equation for G10

1 is quite large we decided to
leave it as it is.

7 Remapping the roughness α in the implemen-
tation

In the current implementation the roughness α is remapped with (1− α)
2

and
is named sharpness.

References

[1] Brent Burley. Physically based shading at disney, 2012.

[2] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Tor-
rance. Microfacet models for refraction through rough surfaces. In Pro-
ceedings of the 18th Eurographics Conference on Rendering Techniques,
EGSR’07, pages 195–206, Aire-la-Ville, Switzerland, Switzerland, 2007. Eu-
rographics Association.

7


