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Figure 1: "Office" and "Living room" scenes rendered with classical environment sampling (Baseline) and our adaptive strategy.
We present both CPU and GPU implementation results and show that our algorithm produces much cleaner images in the
same time. The effective speedup, measured as the time to achieve the same noise level, for CPU/GPU implementations is,
respectively: "Office" - 6.6/3.8 and "Living room" - 2.7/2.4. "Office" scene courtesy of Evermotion.

ABSTRACT

We present a production-ready approach for efficient environment
light sampling which takes visibility into account. During a brief
learning phase we cache visibility information in the camera space.
The cache is then used to adapt the environment sampling strat-
egy during the final rendering. Unlike existing approaches that
account for visibility, our algorithm uses a small amount of mem-
ory, provides a lightweight sampling procedure that benefits even
unoccluded scenes and, importantly, requires no additional artist
care, such as manual setting of portals or other scene-specific ad-
justments. The technique is unbiased, simple to implement and
integrate into a render engine. Its modest memory requirements
and simplicity enable efficient CPU and GPU implementations that
significantly improve the render times, especially in complex pro-
duction scenes.
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1 INTRODUCTION

Image-based lighting (IBL) is an irreplaceable tool in production
rendering used to light a scene with an environment map. We
are interested in computing the reflected radiance L, due to dis-
tant environment illumination L; using the reflection equation
Lr(x,0) = /‘HZ (n) fr(%,0,1)L4())V(x,i)(n - i)di, where the integra-
tion is over the hemisphere H? defined by the normal n at the
shading point x, i and o are incident and outgoing light directions,
fr is the BRDF, and V is the environment visibility. IBL is often
a major source of noise, especially in interiors, because of occlu-
sion. This has been traditionally addressed by placing portals and
recently we have seen substantial improvements in this direction
[Bitterli et al. 2015]. However, portals are not an effective approach:
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the user is forced to spend time setting them up and has to un-
derstand how to use them effectively. This negatively affects the
usability of the renderer [Karlik 2014]. For this reason, we seek a
solution that can handle visibility in a way that is entirely transpar-
ent to the user. Bitterli et al. [2015] provide an overview of existing
techniques and point out that those addressing visibility generally
suffer from high memory usage, expensive computation or com-
plex data structures, which limits their practicality, especially when
used on GPUs. Furthermore, in favour of the SIMD architecture,
we prefer grid-based look up over complex data structure traversal,
because the latter results in higher code divergence [Bialas and
Strzelecki 2015]. Lastly, a solution that improves occluded scenes
but does not slow down unoccluded scenes is highly desirable.

2 OUR ALGORITHM

We divide the environment map into Ty, X T, equal-sized tiles and
introduce a Gx XGy, spherical grid in the camera space which we call
the light grid. Our algorithm operates in two phases: learning and
rendering. The learning phase estimates and stores the contribution
of each environment tile to each light grid cell. In the rendering
phase we use the stored information to importance sample the
environment map tiles based on their precomputed contribution
[Cline et al. 2008]. A direction inside the chosen tile is then sampled
proportionally to the environment intensity.

2.1 Learning phase

The light grid consists of G = GxGy cells, each holding an ar-
ray with T = T, T, values, representing the contributions of the
map tiles to the cell. A fixed number of camera paths are traced
in the scene and for each path vertex — whether due to a primary
ray or a secondary, GI ray — we determine its corresponding grid
cell by projecting the vertex back to the camera center. We then
importance sample the environment map and determine the sam-
ple’s contribution, which is accumulated in the corresponding grid
cell/map tile entry. This works well even when multiple or semi-
transparent objects project to the same cell (see the supplementary
document). At the end of the learning phase each cell ¢; has T val-
ues vjj,j = 1...T, that approximate the average radiance reaching
the cell due to illumination from environment map tiles. Finally,
for each cell these values are normalized and a CDF is constructed
to facilitate sampling [Pharr et al. 2016].

Our default rendering pipeline starts with a brief irradiance
caching phase. We take advantage of the samples generated in this
prepass to calculate the tile sampling distributions. In this way
the learning phase introduces a negligible overhead to the whole
rendering process.

2.2 Rendering phase

During the actual rendering we combine one BRDF sample and one
sample from our modified environment sampling strategy using
MIS [Veach 1998]. For a given shading point, we look up its light grid
cell and use its CDF to pick an environment map tile ¢, see Figure 2.

The probability of picking this tile is p;;. Then we generate an
Lq(i)

La(t;)’
where L;(i) is the environment map radiance along i, L;(t;) is the
average unoccluded radiance due to illumination from tile ¢;. As

incident light direction i over this tile with probability p;; o
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Figure 2: Rendering phase: Shading points x and y are back-
projected to the camera to determine their respective light
grid cells, c[x] and c[y]. A visible environment tile, ¢.[,] and
tc[y] Tespectively, is then chosen based on the cell CDF. Fi-
nally, shadow rays (blue) are sampled over the selected tiles.

a result, our modified environment sampling probability is p =
pijpe;- Note that our adaptive environment sampling is unbiased.
It is possible that some tiles that are visible, but dark and partially
occluded, have probabilities p;; equal to zero. These cases do not
cause any issues in practice since the BRDF sampling strategy is
efficiently sampling these tiles.

2.3 Implementation and results

The algorithm is implemented in two separate production ren-
dering engines (one CPU and one GPU). Tests on user produc-
tion scenes show between 10% and 700% speedup. Two exam-
ple interiors are shown in Figure 1. We observed that light grid
resolution (Gx,Gy) = (100, 50) and the environment map tiling
(Tu, Tv) = (16, 32) work well for production scenes and result in a
modest 10MB memory usage. Coarser or finer subdivision gradually
reduce the performance. We trace 10° camera paths in the learning
phase which usually takes less than 1% of the total render time. The
learning phase accumulation is implemented using fetch-and-add
instructions, avoiding synchronization locks.

The algorithm requires a data structure that can efficiently draw
samples, proportional to the map intensity, from the whole environ-
ment map as well as from map tiles individually. For this purpose
we use an image sampler, based on a summed area table (SAT), that
can draw samples from arbitrary rectangular subregions [Bitterli
et al. 2015]. Single-precision SAT is notorious for its rounding error
and fails to sample accurately large HDR images. Therefore, we
build it in double precision and remap it to the 32-bit integer-value
SAT. In the context of sampling, we found that the integer-valued
SAT outperforms its single-precision counterpart in every way.
Details are provided in the supplementary document.
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