
Efficient Multiscale Rendering of Specular Microstructure
Asen Atanasov

Charles University, Prague
Chaos Group

Jaroslav Křivánek
Charles University, Prague

Chaos Czech a. s.

Vladimir Koylazov
Chaos Group

Alexander Wilkie
Charles University, Prague

Ours

direct
render

Ours
Time: 35sec
Mem: 144MB

[Yan et al. 2016]

Time: 1576sec
Mem: 25GB

Ours
Time: 50sec
Mem: 576MB

[Yan et al. 2016]

Time: 4247sec
Mem: 100GB

Figure 1: Our filtering method on surfaces such as car paint and scratched metal: left to right, texture resolution is 4k, 4k, and
8k and number of bins 𝐵 is 1272, 632 and 2552. In the leftmost figure, the insets show the difference between our method (top)
and unfiltered direct normal map evaluation (bottom). Unfiltered rendering misses many sparkles, and would flicker in an
animation. The insets of the middle and right images are comparisons between our method (top) and that of Yan et al. [2016]
(bottom) which is rendered with one Gaussian element per texel and intrinsic roughness 𝜎𝑟 = 0.005.

ABSTRACT
Texturing is a ubiquitous technique used to enrich surface appear-
ance with fine detail. While standard filtering approaches, such as
mipmapping or summed area tables, are available for rendering
diffuse reflectance textures at different levels of detail, no widely
accepted filtering solution exists for multiresolution rendering of
surfaces with fine specular normal maps. The current state of the art
offers accurate filtering solutions for specular reflection at the cost
of very high memory requirements and expensive 4D queries. We
propose a novel normal map filtering solution for specular surfaces
which supports data pre-filtering, and with an evaluation speed
that is roughly independent of the filtering footprint size. Its mem-
ory usage and evaluation speed are significantly more favorable
than for existing methods. Our solution is based on high-resolution
binning in the half-vector domain, which allows us to quickly build
a very memory efficient data structure.

CCS CONCEPTS
• Computing methodologies→ Reflectance modeling.

KEYWORDS
specular reflection, normal map, car paint, glints
ACM Reference Format:
AsenAtanasov, Jaroslav Křivánek, Vladimir Koylazov, andAlexanderWilkie.
2020. Efficient Multiscale Rendering of Specular Microstructure. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7971-7/20/08.
https://doi.org/10.1145/3388767.3407338

Talks (SIGGRAPH ’20 Talks), August 17, 2020. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3388767.3407338

1 RELATEDWORK
Accurate rendering techniques for specular normal maps are based
on microfacet theory [Walter et al. 2007]. The smooth distribution
of a classical microfacet BRDF 𝐷 (h) defined for the half vector h
is replaced by a normal distribution function (NDF) defined by the
normal map [Yan et al. 2016]. Given a normal map with 𝑁 texels,
each texel has a normal t𝑘 and occupies region 𝑇𝑘 in the texture
space: the NDF is defined as 𝐷 (h, x) = ∑𝑁

𝑘=1 𝛿 (t𝑘 , h)I𝑇𝑘 (x), where
𝛿 is a spherical delta function and I𝑆 is the indicator function on the
set 𝑆 . Note that the NDF depends on the texture space position x.
In order to facilitate efficient evaluation of the sharp spikes typical
for glitter NDF, Yan et al. [2016] approximate the normal map
positions and normals with 4D Gaussians referred to as elements.
Effectively, this approximation introduces Gaussian filters for both
location and normal information. These elements are sorted in
a 4D hierarchy, and a traversal is required to evaluate the NDF
or to sample normal proportional to it. Compared to brute force
rendering, this approach offers significant improvements for point
and small area lights. It is the approach closest to our own work,
but we improve in several important aspects: memory efficiency,
performance and pre-filtering. This allows our solution to scale
well for distant views, and very high resolution normal maps.

Recently, Gamboa et al. [2018] presented a pre-filtered solution
to the problem, which offers memory and speed improvements
over Yan et al. [2016] via pre-filtering of the environment. However,
their solution is not directly suitable for integration into a general
rendering engine, due to a heavy pre-computation step, and lack of
support for area lights.

In this paper, we propose a novel filtering technique: our tech-
nique is accurate, efficient at all scales, and requires only a brief
preparation phase. Also, our memory requirements are comparable

https://doi.org/10.1145/3388767.3407338
https://doi.org/10.1145/3388767.3407338

SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA Atanasov, Křivánek, Koylazov, Wilkie

h

Hj

m Hi

x

y

A

Tkj1
Tkj2

Tkj3

Tkj4

Tkj5

Figure 2: Left: Thehemisphere partitioned into 5×5 bins seen
from above. The half vector h is inside bin 𝑗 . Right: The pixel
footprint 𝐴 in the texture space. All 5 texels corresponding
to the 𝑗-th bin B−1 (𝑗) = {𝑘 𝑗1 , . . . , 𝑘 𝑗5 } are drawn in red. Three
of them overlap with 𝐴, are in 𝑘𝐴 𝑗

, and contribute to 𝐷
𝐻 𝑗

𝐴
.

to mipmapping, which is at least 60 times less than current state of
the art [Gamboa et al. 2018].

2 OUR SOLUTION
To achieve these improvements we apply a constant filter in both
texture and half-vector spaces. Specifically, we average the NDF
over a finite area 𝐴 around x and a finite solid angle 𝐻 around
h rendering the filtered NDF 𝐷𝐻

𝐴
= 1

|𝐻 | |𝐴 |
∫
𝐻

∫
𝐴
𝐷 (h, x)dxd𝜔h ≈

1
|𝐻 | |𝐴 |

∑𝑁
𝑘=1 I𝐻 (t𝑘) |𝐴 ∩ 𝑇𝑘 |, where |𝑆 | is the area of the region 𝑆 .

The approximation is accurate for small 𝐻 . This formulation sug-
gests that 𝐷𝐻

𝐴
is evaluated by summing the area of all texels inside

the filtering area 𝐴 whose normals are in the solid angle 𝐻 . To
define finite solid angles for different half vectors we partition the
hemisphere into 𝐵 equiangular bins 𝐻 𝑗 , hence the bin solid angle is
|𝐻 𝑗 | = 2𝜋

𝐵
, see projected hemisphere in Figure 2. Furthermore, we

set the filtering region 𝐴 to the pixel footprint defined by the ray
differentials [Igehy 1999].

Next we describe howwe sample a normal from theNDF and how
we evaluate the NDF. Using these two procedures we implement
sampling and evaluation of a microfacet BRDF [Walter et al. 2007].

2.1 Sample 𝐷𝐻
𝐴

As preparation step, we quantise the normal map by assigning each
of its 𝑘 texels t𝑘 to a directional bin𝐻 𝑗 in a bin map B(𝑘) = 𝑗 . Given
a pixel footprint 𝐴, we sample a normal proportional to the NDF
by sampling a random point y in 𝐴, and finding its corresponding
bin index 𝑖 from the bin map. We then sample a random normal m
inside the bin 𝐻𝑖 , see the blue regions in Figure 2. The probability
to sample this normal is equal to the NDF 𝐷𝐻𝑖

𝐴
.

2.2 Evaluate 𝐷𝐻
𝐴

A key observation is that in our context sampling and evaluation
are inverse operations. Sampling computes an NDF normalm given
a map texel, while evaluation finds all contributing map texels
given a half vector normal h. We notice that sampling based on
the bin map B is a very efficient operation, while the evaluation
is potentially very inefficient, as the number of texels in 𝐴 can be

almost arbitrarily large. Therefore, we design the inverse map of
the bin map to facilitate the evaluation. Since the bin map B maps
a texel index to a bin index, we define the inverse bin map B−1 as
the mapping from a bin index to the list of texel indices for a given
bin index: B−1 (𝑗) = {𝑘 𝑗1 , 𝑘 𝑗2 , · · · , 𝑘 𝑗𝑏 }, where 𝑗𝑏 is the number of
normals in bin 𝑗 . For a half vector h, we evaluate the NDF based on
the inverse bin map B−1 as follows: first, we find the bin index 𝑗 ,
such that h ∈ 𝐻 𝑗 . Then we select the subset 𝑘𝐴 𝑗

of texels B−1 (𝑗)
which lie in 𝐴: in Figure 2, only {𝑘 𝑗2 , 𝑘 𝑗4 , 𝑘 𝑗5 } are in 𝐴.

2.3 Implementation details
During the preparation step we compute and store the two 𝑁 -
element integer maps B and B−1 based on the input normal map
which we do not keep afterwards. Note that in a typical normal
map often |B−1 (𝑗) | is too large for linear traversal, therefore, we
devise a combination of two auxiliary data structures that make
access to B−1 efficient. The first observation which led us to this
design was that for a large number of bins, the nonempty entries
are sparse. Therefore, we use a hash map that maps a bin index
to its texel list in B−1. Furthermore, some bin lists in B−1 are too
large to be traversed linearly. To optimise their traversal, we build
a forest of 2D kd trees, one for each texel list in B−1 larger than a
given value 𝐿 (16 in our implementation). 𝐿 is the maximum leaf
size of the forest. During the construction of the forest we follow
several conventions. First, we always split the larger side of the
node in the middle, so that split dimension and split position do
not need to be stored. Second, we sort each texel list so that for
each tree node its texels are consecutive in B−1. This serves two
purposes for the traversal: cache coherence is improved, and the
size of each node is implicitly propagated as offsets to the node
start and end in B−1. This property provides pre-filtering data, so
if a node is entirely inside the filtering region 𝐴 its total area is
immediately returned. Lastly, to achieve memory efficiency and to
favour serialisation, we pack the whole forest topology in a single
integer list.

Our benchmarks confirmed that in contrast to existing tech-
niques [Yan et al. 2016], the memory and run time requirements
of our method are compatible with use in a production renderer.
Sample images rendered with our technique are presented in Figure
1, along with timing and memory usage.

ACKNOWLEDGMENTS
We are grateful to Veselin Mihaylov for preparing the scenes and
to Lingqi Yan for providing us with his code.

REFERENCES
Luis E. Gamboa, Jean-Philippe Guertin, and Derek Nowrouzezahrai. 2018. Scalable

Appearance Filtering for Complex Lighting Effects. ACM Trans. Graph. 37, 6, Article
277 (Dec. 2018), 13 pages. https://doi.org/10.1145/3272127.3275058

Homan Igehy. 1999. Tracing Ray Differentials. In Proceedings of SIGGRAPH ’99. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 179–186. https://doi.
org/10.1145/311535.311555

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet Models for Refraction Through Rough Surfaces. In Proceedings of the
18th Eurographics Conference on Rendering Techniques (EGSR’07). Eurographics
Association, Aire-la-Ville, Switzerland, 195–206. https://doi.org/10.2312/EGWR/
EGSR07/195-206

Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-
Normal Distributions for Efficient Rendering of Specular Microstructure. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2016) 35, 4 (2016).

https://doi.org/10.1145/3272127.3275058
https://doi.org/10.1145/311535.311555
https://doi.org/10.1145/311535.311555
https://doi.org/10.2312/EGWR/EGSR07/195-206
https://doi.org/10.2312/EGWR/EGSR07/195-206

	Abstract
	1 Related work
	2 Our Solution
	2.1 Sample DAH
	2.2 Evaluate DAH
	2.3 Implementation details

	Acknowledgments
	References

