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Figure 1: A photograph of wing mirror (left) with pronounced glint from metallic flakes that served as an inspiration for our wing mirror
scene (middle). The metallic flakes are modelled with a 2K normal map with flakes sampled from a GTR distribution (GTR gamma = 1.5, GTR
alpha = 0.002) [Bur12]. Additionally, the roughness of the flakes is modelled with a Beckmann distribution with Beckmann alpha = 0.005. The
flake roughness contributes to the overall appearance, and is a useful parameter for artistic control. To the right we provide three regions from
the same scene rendered with different Beckmann flake roughness (0.0025, 0.01, 0.04). Small perturbations of the roughness of the flakes
completely change the behaviour of the glints. The rendering of such nearly specular surfaces requires some form of filtering, the effect of
which is shown in our accompanying video. All the renderings in this figure were done with our proposed normal map filtering algorithm.

Abstract

Accurately controllable shading detail is a crucial aspect of realistic appearance modelling. Two fundamental building blocks for
this are microfacet BRDFs, which describe the statistical behaviour of infinitely small facets, and normal maps, which provide
user-controllable spatio-directional surface features. We analyse the filtering of the combined effect of a microfacet BRDF and a
normal map. By partitioning the half-vector domain into bins we show that the filtering problem can be reduced to evaluation
of an integral histogram (IH), a generalization of a summed-area table (SAT). Integral histograms are known for their large
memory requirements, which are usually proportional to the number of bins. To alleviate this, we introduce Inverse Bin Maps,
a specialised form of IH with a memory footprint that is practically independent of the number of bins. Based on these, we
present a memory-efficient, production-ready approach for filtering of high resolution normal maps with arbitrary Beckmann
flake roughness. In the corner case of specular normal maps (zero, or very small roughness values) our method shows similar
convergence rates to the current state of the art, and is also more memory efficient.
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• Computing methodologies → Rendering; Reflectance modeling;
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1. Introduction

Since its beginning, the quest for photorealistic computer-generated
images has had researchers focus on physically based models of
reflectance, both for entire surfaces, as well as for detailed structures.
Microfacet theory was developed in the optics community before
the advent of computer graphics [BS63; TS67], was only later intro-
duced to graphics by Cook et al. [CT82], and became an essential
tool in the field [WMLT07]. Microfacet theory assumes that sur-
faces are made up of a collection of statistically distributed reflective
facets, and it describes their aggregate directional behaviour. How-
ever, the resulting purely homogeneous surface appearance only
matches our visual experience when viewing objects from rather
large distances. For the closeup and mid-range views, which are
much more common in our everyday experience, the effect of light
interacting with individual details of surface structure can often be
resolved by the naked eye.

Independently of microfacet approaches, Blinn et al. [Bli78] pre-
sented bump mapping, a technique which adds fine surface detail
by perturbing the surface normal according to a heightfield that is
provided via a texture. When the tangent space normal is directly
stored in the texture, this technique is referred as normal mapping.

Rendering the combined BRDF of a normal map used on a mi-
crofacet BRDF was investigated from the perspective of microfacet
theory by Schüssler et al. [SHHD17]: this is a problem of high
practical relevance. Virtually all rendering systems support normal
mapping and the user can additionally control the roughness of
the underlying surface. For example, a metal surfaces with different
roughness can be represented by a microfacet BRDF while scratches
can be added through a normal map. Normal-mapped surfaces with
roughness close to zero produce spatially varying, illumination- and
view- dependent micro-highlights referred to as glints, sparkles,
coherent scratches, etc. Metallic car paint flakes can be modelled
via normal map [GCG*05]. While their surface can be modelled as
specular, measurements support that the roughness of the individ-
ual flakes has an important contribution to the overall appearance
[SNM*02].

In Section 4, we investigate the problem of properly filtering
such a combined microfacet BRDF. Filtering techniques like mip
mapping [Wil83] and summed-area tables [Cro84] are available for
diffuse color textures, but they do not work for normal maps due to
the nonlinearity of the reflection operator [HSRG07]. We show that
the normal map filtering problem can be solved using a generalized
summed-area table known as integral histogram (IH) [Por05]. In
section 5, we develop an accurate and efficient filtering algorithm
for Beckmann flake roughness that can be implemented using IH.
However, the memory requirements of standard IH implementations
make them impractical to use for non-trivial scenes. Therefore, we
introduce a new optimized form of IH, the Inverse Bin Map (IBM),
which is very fast to build, and which has modest memory require-
ments, comparable with mip maps and SATs. The contributions of
our work are:

• We show that the filtering problem of the combined effect of
a normal map and a microfacet BRDF can be reduced to the
evaluation of an Integral Histogram.
• We introduce the Inverse Bin Map (IBM) - a novel implemen-

tation of integral histograms with a memory footprint similar to

the size of the input data and not proportional to the number of
histogram bins. Additionally, our data structure is fast to build,
and naturally supports arbitrary query regions.
• An accurate and efficient filtering algorithm for Beckmann mi-

crofacet BRDF based on IBMs.

2. Related work

2.1. Explicit micro-structure modeling.

Ershov et al. [EKK99; EKM01] simulated metallic car paint using a
statistical model: the main drawback of their approach was that ap-
pearance was not consistent in animations. Günther et al. [GCG*05]
simulated metallic car paint glitter based on non-filtered procedu-
rally generated normal maps. We take the same approach to render
car paint and show that filtering is crucial to resolve such sharp
glints. Rump et al. [RMS*08] rendered car paint using measured
data. Jakob et al. [JHY*14] developed a model based on micro-
facet theory which uses a stochastic process to compute temporally
consistent sparkling. This method can be used to render metallic
flakes, but flake roughness and size and transparency of the flake
layer cannot easily be included in the model. Zirr et al. [ZK16]
presented a real-time approach capable of rendering sparkling flakes
and parallel scratches. Later, Chermain et al. [CSJD20] developed a
real-time approach to render glitter that additionally converges to
the microfacet BRDF for high flake densities. Methods specialized
for efficient rendering of scratches have been recently developed
[RGB16; WVJH17; VWH18]. Kuznetsov et al. [KHX*19] simulate
materials with stochastic nature like flakes and scratches with a
pre-trained neural network. These approaches are limited to specific
spatial details, thus have limited expressiveness.

2.2. Normal map filtering.

Approaches based on normal maps are more flexible since they
can represent the spatial and directional features given by the map.
Therefore, efficient implementation of normal map filtering is a very
important problem for production rendering systems. Approaches
that approximate the actual distribution of normals inside the pixel
with a single lobe [Tok05; OB10; DHI*13] offer artefact-free solu-
tions, and are compatible with real-time graphics, but high frequency
detail like sharp sparkling is lost [YHJ*14]. Han et al. [HSRG07]
investigated the combined effect of an isotropic BRDF and a nor-
mal map and provided filtering techniques that approximate the
distribution of normals by a small number of lobes. Notably, Wu et
al. [WZYR19] developed a method for pre-filtering of displacement-
mapped surfaces with isotropic BRDFs which accounts for accurate
shadowing-masking and interreflections. The method does not sup-
port high directional resolution to render closely viewed specular
surfaces.

A family of accurate approaches for specular normal maps in-
herits the mathematical framework of Yan et al. [YHJ*14] which
represents the NDF as a convolution of a Gaussian footprint around
the shading point and a Gaussian intrinsic roughness lobe around the
normal map directions. This definition leads to 4D texture-direction
Gaussian queries to evaluate the NDF. Later approaches improve
performance [YHMR16], compute antialiasing for global illumina-
tion effects [BYRN17], derive accurate shadowing-masking factors
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A. Atanasov, A. Wilkie, V. Koylazov & J. Křivánek / A Multiscale Microfacet Model Based on Inverse Bin Mapping

using approximation with anisotropic Beckmann lobes [CCM18],
and introduce wave effects [YHW*18]. All of them have high mem-
ory requirements and are based on expensive 4D position-normal
queries. Zhu et al. [ZXW19] developed a method based on the
method of Yan et al. [YHMR16] which offers memory reduction
for the special case of normal maps with a block structure. Wang et
al. [WHHY20] generate an infinite surface from a small example
map via by-example blending. Memory usage is 35MB for a 5122

map, which can be reduced by at least 10% when flat Gaussian
elements[YHMR16] are used. Both Zhu et al. [ZXW19] and Wang
et al. [WHHY20] are intended to render textures with predominantly
stationary structure, and without macroscopic features. Recently,
Gamboa et al. [GGN18] explored the combined filtering of specu-
lar normal maps and an environment illumination. The additional
pre-filtering of the incident illumination by projecting the environ-
ment to a spherical harmonics (SH) basis is a key advantage of
this technique. The pre-filtering of the SH coefficients is achieved
by a spherical histogram, which is an integral histogram, that is
constructed over spherical bins. This aspect is similar to our solu-
tion, although the use of classical IH attributes to the large memory
requirements of the method (2.3-2.7GB for 2K maps), and filtering
queries are restricted to axis-aligned regions: our proposed method
usually uses less than 40MB (for 2K maps), which is at least 60
times less memory. Practical disadvantages are a lack of support for
area light sources, and typically at least minutes of pre-computation
time that are needed for SH projections. Recently, specular man-
ifold sampling (SMS) method was demonstrated to render glints
with modest memory requirements and with similar convergence
rates [ZGJ20]. The method also has a brief pre-computation: only
a LEAN map [OB10] is built. However, SMS does not employ an
acceleration data structure to find the glints in the pixel footprint,
and instead relies on stochastic sampling. This strategy becomes
inefficient for an increasing number of glints in the footprint.

2.3. Discussion

The method of Yan et al. [YHMR16] provides two modes of opera-
tion: flat Gaussian elements which represent the non-interpolated
normal map, and curved Gaussian elements which represent a
smooth interpolated surface. We support only flat un-interpolated
normal maps, and therefore our surface is very similar to Yan’s flat
elements, see Figure 2. Our proposed technique aims to provide a
practical filtering solution not only for specular surfaces, but also for
surfaces with low roughness where the appearance changes dramati-
cally, but filtering is still beneficial. Our solution exposes a single
parameter, Beckmann roughness, which provides meaningful artistic
control. This parameter, which we also refer to as Beckmann flake
roughness, is conceptually similar to the intrinsic roughness of Yan
et al. [YHMR16]. But the memory requirements of their method
are very high, see Table 2. Furthermore, the intrinsic roughness is
designed and demonstrated to work in a small operational range
that represents specular surfaces. Surfaces with a slightly larger
roughness are out of the scope of Yan et al., and the method quickly
loses energy, see Figure 3. Note that in all comparisons we match
our Beckmann flake roughness to Yan’s intrinsic roughness using
the relation α =

√
2σr [Hei14].

The method of Yan et al.[YHMR16] must locate all Gaussian

Ours Yan (flat) Yan (curved) Kettle map

Figure 2: Kettle scene [ZGJ20]: 50× zoom is applied to observe
the surfaces of the three different models. From left to right: our
method, Yan[2016] flat elements and Yan[2016] curved elements.
The rightmost image is the normal map. Our method does not sup-
port normal map interpolation and renders a piecewise flat surface
similar to the flat Gaussian elements of Yan et al. [YHMR16]. Yan’s
flat elements are blurrier due to the Gaussian footprint whereas our
method uses pixel-wide "box" filter. The kettle scene can be seen in
Figure 7.

elements inside the pixel that contribute to the reflection. Then con-
tributing elements have to be processed individually and weighted
against the Gaussian footprint. This could be inefficient for scenes
with high texel-to-pixel ratios and many contributing elements. For
example, such inefficiency is demonstrated in the convergence plots
of Yan’s curved elements in Figure 7 and we discuss it in Section
6.1. Note that altering the texel-to-pixel ratio is an extremely com-
mon scenario in practical renderer usage: when the object is moving
away from the camera or the camera is zooming out, when the scene
is rendered at lower resolution, or when the tiling of the texture
is increased. In our method, the contributing texels in each pixel
increase with Beckmann flake roughness. Therefore, our data struc-
ture provides pre-filtering: the aggregated projected area of texels
with similar normals inside the pixel is efficiently computed for high
texel-to-pixel ratios. Our data structure is extremely fast to build and
uses less memory than Yan’s flat elements.

2.4. Integral histograms

Integral histograms (IH) were first introduced in the field of com-
puter vision [Por05], and became a fundamental tool for image
analysis and processing that has numerous applications[BP19]. Due
to their high memory requirements WaveletSAT [LS13] was devel-
oped, offering lossless compression of IH at the cost of reducing
the query complexity from constant to logarithmic. Compression
rates are commonly 1:8[BP19]. Recently, Ballester-Ripoll and Pa-
jarola [BP19] proposed a lossy compression scheme for IH based on
tensor decomposition with higher compression rates and extended
IH queries for arbitrary regions: however, the price for this are slower
retrieval times. In principle, our algorithm and other variations based
on the binned BRDF described in Section 4 can be implemented
with any of these three data structures - classical IH, WaveletSAT
and the tensor decomposition scheme. Due to the high number of
bins required by our solution, and potentially high-resolution normal
map, the memory requirements of the first two are too high for our
practical application. The method of Ballester-Ripoll et al. [BP19]
provides significantly more flexibility in terms of supported query
regions, but it is not viable for our problem, due to its pre-processing
time that can be up to several hours.
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Yan (flat) Ours

Figure 3: Shoes scene [ZGJ20]: Renders with Gaussian flat ele-
ments (left column) [YHMR16] and with our method (right column).
The three rows show increasing roughness σr (0.01,0.05,0.25).
Note that the method of Yan et al. is designed to render specular
surfaces and does not conserve energy for increased roughness.

3. Background

We present the main constructs that we build on to develop our
filtering algorithms.

3.1. Microfacet BRDF

The microfacet BRDF with specular microfacets [WMLT07] is:

f α(i,o,n) = F(i,h)Dα(h,n)Gα(i,o,h,n)
4(i ·n)(o ·n) . (1)

We use similar notation to Walter et al. [WMLT07], see Table 1.
However, their definitions of the microfacet distribution D and the
shadowing-masking function G depend implicitly on the macrosur-
face normal n and the roughness parameter α - note that all angles
are defined with respect to n. For clarity of our derivation we make
both dependences explicit. Importantly, microfacet BRDFs approach
the specular BRDF [WMLT07] as the roughness diminishes

lim
α→0

f α(i,o,n) = F(i,h)δ(h,n)
4(i ·h)2 . (2)

Table 1: Table of notation.

Macrosurface-related symbols
H2 Unit hemisphere
D Unit disk
i Incoming light direction
o Outgoing light direction
n Surface normal at position x
h Half vector h = (i+o)/‖i+o‖
x Position on a macrosurface
A Finite region in texture space around x
fx Combined BRDF at position x
fA Filtered BRDF over A
F Fresnel term for conductors or dielectrics

Microsurface-related symbols:
tk Normal of k-th texel
Tk Texture space region corresponding to k-th texel
N Total number of normal map texels
wk Texel weight |A∩Tk|/|A|
H j Bin on the hemisphere with index j
B Total number of bins
W j Bin weight ∑k|tk∈H j

wk

β, β
−1 Binning strategy and its inverse

B, B−1 Bin Map and Inverse Bin Map
Dx Normal distribution function (NDF)
Gx Shadowing-masking function of the normal map
α Beckmann flake roughness
f α Microfacet micro-BRDF aligned with the microsurface
Dα Microfacet distribution of the micro-BRDF
Gα Shadowing-masking function of the micro-BRDF
C Texel contribution function

Other symbols:
|X | Surface area of the region X
IX Indicator function of the region X
δ Spherical delta function
σr Yan’s intrinsic roughness [YHJ*14; YHMR16]

Indeed microfacet materials without roughness have all facets
aligned with the macrosurface: the microfacet distribution Dα be-
comes a Dirac delta distribution, there is no shadowing-masking
Gα = 1, and the expression is nonzero only when h = n.

3.2. Normal map

The normal map is a collection of N texels, each occupying an equal
rectangular region Tk of unit texture space, and it is associated with
a normal in tangent space tk ∈H2. Alternatively, the normals can
be defined as points on the unit disk D [YHJ*14].

The normal distribution function (NDF) based on the normal map
is

Dx(m) =
N

∑
k=1

δ(tk,m)ITk (x), (3)

which is dependent on the texture space position x and ITk is the
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indicator function of the texel region Tk. Our definition is equivalent
to the one in Han et al. [HSRG07], however we do not divide
explicitly by N, because in our definition the texel area is |Tk|= 1

N .

3.3. Combined BRDF

In order to use microfacet BRDFs and normal maps together in
a way that is in agreement with assumptions of microfacet theory
we follow a derivation similar to Schüssler et al. [SHHD17]. We
substitute Dx for the microfacet distribution and f α for the micro
BRDF in the general formula for microfacet BRDF with a micro
BRDF assigned to each microfacet [WMLT07]

fx(i,o,n) =
∫
H2

(i ·m)(o ·m)

(i ·n)(o ·n) f α(i,o,m)Dx(m)Gx(i,o,m)dωm

=
N

∑
k=1

(i · tk)(o · tk)

(i ·n)(o ·n) f α(i,o, tk)Gx(i,o, tk)ITk (x),

(4)

where n is the surface normal at position x, m is the microsurface
normal and Gx is the shadowing-masking function corresponding to
Dx. As previous work, we use Smith shadowing-masking function
of the normal map Gx [YHMR16]. The integration is defined over
the unit hemisphereH2 for an infinitesimal solid angle dωm around
the micronormal m. The delta function in the definition of Dx breaks
the integral into a sum over all texel normals tk. Furthermore, only
the term for which ITk (x) is nonzero, the term for which x ∈ Tk.
When we expand f α in this term we reach the desired combined
BRDF of a normal map and a microfacet BRDF

fx(i,o,n) =
(i · tk)(o · tk)

(i ·n)(o ·n)
F(i,h)Dα(h, tk)G

α(i,o,h, tk)

4(i · tk)(o · tk)
Gx(i,o, tk)

=
F(i,h)Dα(h, tk)G

α(i,o,h, tk)

4(i ·n)(o ·n) Gx(i,o, tk)

= F(i,h)C(i,o, tk,n),
(5)

where C(i,o, tk,n) = Dα(h, tk)G
α(i,o,h, tk)Gx(i,o, tk)/(4(i ·n)(o ·

n)) is the texel contribution.

3.4. Integral histogram (IH)

For our exposition we describe 2D IHs, however they are directly
generalized to higher dimensions. We start by defining the related
concept of a summed-area table (SAT) [Cro84]. It is a cumulative
table of a 2D array used for fast integral look-ups in arbitrary axis-
aligned regions. Given a 2D array I(i, j) ∈ R, the SAT of I is again
a 2D array of the same size

SATI(i, j) =
i

∑
k=0

j

∑
l=0

I(k, l). (6)

Given an arbitrary axis-aligned region i0 ≤ i≤ i1, j0 ≤ j ≤ j1 in I,
the SAT is used to efficiently look up the sum of I over it

SATI(i1, j1)−SATI(i1, j0)−SATI(i0, j1)+SATI(i0, j0). (7)

Note that this is a discrete application of the Fundamental Theorem
of Calculus in 2D.

Integral Histograms (IHs) are a natural extension of SATs. For a

2D data set with specified binning strategy, the idea is to build SATs
on the indicator functions of the bins[BP19]. Specifically, for a data
set I with binning β the indicator functions are

Ib(i, j) =

{
1, β(I(i, j)) = b
0, otherwise

, 0≤ b≤ B (8)

where B is the number of bins. The IH of the data set then is

IHI,β = {SATI0 , · · · ,SATIB−1} (9)

Consequently, the histogram of any axis-aligned subregion of I can
be extracted by evaluating Equation 7 for each bin.

In their original form, IHs are ideal due to their fast look-ups, but
they have three considerable disadvantages:

• High memory requirements: the higher the number of bins the
sparser the bin indicator functions are. This redundancy increases
the memory footprint proportionally to the number of bins. There-
fore, it is not unusual for IHs to be unviable due to them exceeding
the available memory for a given task[BP19].
• Slow construction: the construction speed can be too slow for

some applications, especially for large number of bins.
• Only axis-aligned look-ups: traditional IHs with fast look-up

are restricted to axis-aligned rectangle regions. In turn, this would
imply that we would have to use axis-aligned pixel footprints A⊥,
which is undesirable.

4. Normal map filtering

Proper filtering of normal maps is a challenging problem. In this
section, we analyse the filtering of our combined microfacet BRDF
fx.

4.1. Filtered BRDF

We define the filtered BRDF fA by averaging a spatially varying
BRDF fx over a finite texture space region A around x:

fA(i,o,n) =
1
|A|

∫
A

fx(i,o,n)dx. (10)

Note that on both sides of the equation, n is the normal at position
x. Like all previous filtering techniques we rely on the assumption
of a locally flat geometry. In practice this is a source of bias, which
is however sufficiently small when the surface normal n does not
change considerably over the region A. The filtered BRDF can be
defined more generally using an arbitrary filter kernel, but we use
the constant "box" filter 1

|A| , because this will lead to an efficient
implementation later.

Using Equation 4 for fx we expand fA by substituting f α and
distributing the integration over the normal map texels Tk

fA(i,o,n) = F(i,h)
N

∑
k=1

C(i,o, tk,n)wk, (11)

where

wk =
|A∩Tk|
|A| . (12)

Texel weights wk sum up to 1 and they are nonzero when the texels
Tk cover the filtering region A.
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Therefore, evaluation of this filtered BRDF requires a loop over
all normal map texels which happen to be fully or partially contained
in the filtering region A. For a small number of texels in A this
formulation is actually the most efficient way to compute the filtered
BRDF, but as A grows to cover more texels, this formula becomes
impractical. For such scenarios we derive alternative formulation
for fA.

4.2. Binned BRDF

We partition the hemisphereH2 into directional bins H j ⊂H2 such
that Hi∩H j = ∅, for i 6= j and ∪B

j=1H j =H2, where B is the total
number of bins. Each normal from the map belongs to a bin tk ∈ H j
and therefore for a sufficiently fine binning all normals inside a bin
are nearly identical. This allow us to group the terms in fA by bin
index j

fA(i,o,n)≈ F(i,h)
B

∑
j=1

C(i,o,b j,n)W j, (13)

where b j ∈ H j is a normal in bin j and the bin weights are W j =

∑k|tk∈H j
wk. Consequently, the bin weights W j also sum up to one

like the texel weights wk. The bin weight represent what portion of
the surface in the region A has normal in a given bin.

Note that if we build an IH of the normal map with a given binning
we can compute the bin weights W j in Equation 13 efficiently for
any axis-aligned region in texture space A⊥, that additionally do not
split texels.

5. Our solution

There are practical concerns regarding direct use of Equation 13
with an IH. Although, a single bin can be queried cheaply using
Equation 7, large number of bins can lead to a significant overhead.
The other three practical challenges stem from the classical IH and
are discussed in Section 3.4. In this section we address these issues
and describe our filtering algorithm.

5.1. Beckmann flake roughness

First, we define the micro BRDF f α. We use the Beckmann micro-
facet BRDF with Smith shadowing-masking function [WMLT07]
for Gα. The Beckmann microfacet distribution is

Dα(h, tk) =
χ
+(h · tk)

πα2 cos4(θ)
exp
− tan2

θ

α2 , (14)

where θ is the angle between h and tk, and χ
+(a) is one for a > 0

and zero for a≤ 0. It is a Gaussian distribution of slopes with stan-
dard deviation σ = α√

2
[Hei14]. The tails of Dα are exponentially

bounded, and therefore, 95% of its microfacets are within 2σ and
nearly all of them are contained within 3σ. We chose the Beckmann
distribution with this property in mind, because the bin weights W j
in Equation 13 do not need to be computed for all bins outside of
this region. These terms of the equation will be multiplied by the
tails of Dα and will have tiny contribution to the BRDF value. Given
a threshold 3σ where we cut the tails, the truncated part of Dα lies in
a cone of angle θ0 = arctan(3σ) with radius sin(θ0). Subsequently,

hHj
x

A

Tkj1
Tkj2

Tkj3

Tkj4

Tkj5

Figure 4: Left: The unit disk partitioned into 5× 5 bins. The half
vector h is inside bin H j. Right: The pixel footprint A in the tex-
ture space. All 5 texels corresponding to the j-th bin B−1( j) =
{k j1 , . . . ,k j5} are drawn in red. Three of them overlap with A, are
in kA j , and contribute to W j.

we can evaluate Equation 13 by only considering a smaller number
of bins B0 that sufficiently cover this cone:

fA(i,o,n)≈ F(i,h)
B0

∑
j=1

C(i,o,b j,n)W j (15)

5.2. Bin strategy

We partition the bounding square [−1,1]2 of the unit disk D uni-
formly into b×b bins, each with index j ∈ [0,b2−1], see Figure 4
(right). Each normal on the unit disk belongs to a bin and the bins
that do not overlap with D are always empty (B≤ b2). Then we can
efficiently implement the binning function β and its inverse:

• β(m) = j: Given a normal m ∈ H2, we can find the in-
dex of the bin j which contains it: j = bb(0.5mx +0.5)c+
bbb(0.5my +0.5)c.
• β
−1( j,ξ0,ξ1) = m: We can sample a random normal inside

a given bin j: (mx, my) = (2(b j%bc+ ξ0)/b− 1, 2(b j/bc+
ξ1)/b−1), where ξ0 and ξ1 are uniform random variables.

Our key idea is to choose the bin resolution b depending on the flake
roughness α in such way that the number of contributing bins B0
is a small constant. Thus, surfaces with lower roughness will have
higher bin resolutions. This can be done in a number of ways, but we
found that the following approach works well in practice. We take
a square neighbourhood of bins centered at the bin which contains
the half vector by taking two bins in each direction, a total of 25
bins. Let the 3σ cone of radius sin(θ0) is centered around the half
vector (0,0,1). Our goal is to choose b so that the neighbourhood
of bins sufficiently covers this cone. We set b in such a way that the
ratio between the 25 neighbourhood bins and the total number of b2

bins approximates the ratio between the area of the cone’s bounding
square 4sin2(θ0) and the square of area 4 which bounds the unit
disk:

b =

⌊
5

sin(θ0)

⌋
. (16)

Lastly, we omit the four corners of this square neighbourhood, be-
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Figure 5: Bin size vs. Beckmann flake roughness. Shown is a unit
disk with entries for two half vectors (black dots), and their corre-
sponding 3σ cones (blue). Left: bin resolution 12×12 for Beckmann
flake roughness α = 0.2 and Right: 34×34 for α = 0.07. See Table
4 for the memory usage of our method for different bin resolutions.

cause they are mostly outside the 3σ cone and end up with B0 = 21,
see Figure 5.

5.3. Evaluation and sampling

Using β we transform the input normal map into a bin map B, which
is an integer map of bin indices that correspond to each normal map
direction:

B(k) = β(tk) = j, tk ∈ H j. (17)

Once the bin map is computed we do not store the original normal
map. All necessary components of our algorithm are based on B.
We evaluate the BRDF as follows:

• Find the bin of the half vector j = β(h)
• Find all nearby B0−1 bins that belong to the neighbourhood of

j, see Figure 5
• Compute all B0 bin weights W j of these bins
• For all nonzero bin weights compute the texel contribution func-

tion C at bin centers and accumulate the result, see Equation 15
• Apply Fresnel term for conductors or dielectrics

In order to use this BRDF in the multiple importance sampling
(MIS) framework [VG95], we also provide a sampling technique
for this BRDF:

• Sample random point in A
• Find the corresponding texel Tk
• Look up its bin index from the bin map j = B(k)
• Compute the center normal of this bin b j = β

−1( j,0.5,0.5)
• Generate a random normal with Beckmann distribution m∝ Dα

centered at b j
• Compute the reflected direction i = reflect(o,m)

The corresponding probability is

p(i) = 1
4(i ·h)

B0

∑
j=1

Dα(h,b j)W j. (18)

The rest of this section describes how we compute the bin weights
W j.

5.4. Inverse Bin Map

We developed a novel variant of IH data structures that we call
Inverse Bin Map. Its memory footprint and construction time are
practically independent of the number of bins. Additionally, it
natively supports arbitrary-shaped query regions. These critical
advantages come at the price of raising the look-up cost to
logarithmic, as with WaveletSAT.

A key observation is that in our context sampling and evaluation
are inverse operations. Sampling finds the incoming light direc-
tion i of a given microsurface normal, while the evaluation finds
all contributing microsurface normals given i. As usual, the inverse
problem is the harder of the two. We notice that sampling based
on the bin map B is a very efficient operation, while the evaluation
would require to loop over all bin map texels inside the filtering
region A. Potentially, this is inefficient since the number of texels
could be arbitrary large. Therefore, we designed a data structure that
can act as the inverse of the bin map, in order to make the reverse
operation efficient. Since the bin map B maps a texel position to a
bin index, we define the inverse bin map B−1 as the mapping from
a bin index to the list of texel positions of all texels with the given
bin index:

B−1( j) = {k j1 ,k j2 , · · · ,k jn}, B(k ji) = j, i = 1..n (19)

where n is the total number of normal map normals in bin j. All lists
of positions B−1( j) are concatenated in a single array of of size N
(note that |B−1|= |B|). Essentially, a map of all bin (normal) map
positions, sorted by bin index.

We use B−1 to compute all bin weights W j by selecting the subset
kA j of texels B−1( j) which lie in A: in Figure 4, only {k j2 ,k j4 ,k j5}
are in A. Note that in a typical normal map for some bins j |B−1( j)|
is too large for linear traversal. Therefore, we construct a 2D hier-
archy for each bin j such that |B−1( j)|> L, where L is a leaf size
(L = 10 is our implementation), provided during construction.

Two additional data structures accompany B−1:
Index I: Given a bin index it returns the size of B−1( j) and an
offset. For |B−1( j)| <= L the offset is the start of the list B−1( j)
in B−1. This list is a single leaf and is queried linearly: all texels
k ∈ B−1( j) are tested directly for intersection with A and wk are
computed (Equation 12). If |B−1( j)| > L the offset is the start of
the 2D hierarchy in the forest F . I is implemented as an array of
size B.

Forest F: A forest of 2D kd-trees, one for each bin j such that
|B−1( j)|> L. During the construction of the forest we follow sev-
eral conventions. First, we always split the larger side of the node in
the middle, so that split dimension and split position do not need to
be stored. Second, we sort each texel list so that for each tree node
its texels are consecutive in B−1. This serves two purposes for the
traversal: cache coherence is improved, and the size of each node
is implicitly propagated as offsets to the node start and end in B−1.
This property provides pre-filtering data, so if a node is entirely
inside the filtering region A its total area is immediately returned.
Lastly, to achieve memory efficiency and to favour serialization, we
pack the whole forest topology in a single integer list.
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Usually, IH are used to query the whole histogram with all B bins,
or as in our case sub-histogram of B0 bins together. The inverse bin
map is designed with this proposition in mind. Since all kd-trees
have the same splitting planes, hence the same node sizes. We imple-
ment traversal for a number of bins that computes the intersections
between tree nodes and the region A once for all queried bins. While
the tree nodes are axis-aligned, we use parallelogram approxima-
tion of the pixel footprint A based on ray differentials [Ige99]. In
principle, IBM can work with arbitrarily shaped query regions by
providing the proper node-region intersection procedures.

6. Results

We demonstrate our method with different normal maps and lighting
scenarios. We have implemented a car paint material with metallic
flakes, modelled with a normal map. Flakes orientations are sampled
from a GTR distribution [Bur12], and the corresponding Smith
shadowing-masking function is applied for Gx [Dim15]. The paint
consists of three layers: specular coat layer, metallic flakes layer
filtered with our algorithm and base layer with diffuse and glossy
term. The transparency of the flake layer is computed using a single
channel mip map; when we report the memory for our car paint
material we include this data structure in the total. Additionally, we
provide a control for the roughness of the individual flakes, as we
show in the Wing mirror scene, Figure 1. This scene is lit by a sun
and an environment light. In our video we show that for a range of
small Beckmann flake roughness values the filtering is crucial in
order to achieve converged result: renders with equal time stochastic
sampling exhibit severe flickering.

Our second scene, the Car wheel (Figure 6) has 1K map with
scratches that are tiled over the surface to achieve a high texel-to-
pixel ratio. The scene is lit by 9 small area lights and an environment
with large light sources. In our video we observe that the portions of
the surface lit by the high frequency illumination (the 9 small lights)
benefit from our filtering technique for low roughness values. As
the roughness increases the filtered version is still more stable and
some "boiling" can be seen in the stochastic version, however the
benefit of our technique for these scenarios is smaller.

6.1. Comparison with previous work

We compare our method against Yan et al. [YHMR16], the current
state of the art for rendering specular high-resolution normal maps.
All comparison results in this subsection are based on the original
code, scenes and scripts provided by Zeltner et al. [ZGJ20], which
includes the original implementation of Yan et al. [YHMR16]. We
also implemented our own method as a Mitsuba 2 BRDF [NVZJ19].
All comparisons were rendered on an AMD Ryzen Threadripper
3970X machine. As discussed in Section 2, we want to investigate
the scenario of increasing the number of texels that fall within a
typical image pixel. We do this by rendering the original scenes from
Zeltner et al.[ZGJ20], and by increasing the tiling of the input texture
8 times which results in increasing the texel-to-pixel ratio 82 times.
The results from the comparisons are presented in Figure 7. Our
method demonstrates very similar convergence rates to Yan’s flat
elements for equal matched roughness σr = 0.005. The convergence
plots for both scenes clearly show a tendency: as the number of

Figure 6: Car wheel scene with scratch normal map and Beckmann
flake roughness 0.01 (top) and 0.04 (bottom), and filtered with our
algorithm. The behaviour of this surface in an animation can be
seen in the accompanying video: due to our pre-filtering, object
appearance is temporally stable across frames.

texels per pixel grows, Yan’s curved elements convergence declines.
Note that both Yan flat and curved elements use the same hierarchy
and intrinsic roughness. The difference in the performance in ×8
scenes (second and fourth row in Figure 7) is because in the curved
elements case there are 1-2 orders more contributing elements to
be processed in comparison with the flat elements case. We also
provide additional results from our method with increased rough-
ness to demonstrate that our convergence is not impeded by growing
number of contributing texels. In fact, it improves slightly. Addition-
ally, the Shoes scene demonstrates that for some normal maps the
appearance of Yan’s curved elements for low intrinsic roughness can
be matched with our method with increased roughness, see Figure 7
(the first two rows, Yan (curved) and Ours (rough)). Our method
is 90× more memory efficient and the pre-processing is nearly 30×
faster than Yan’s method with flat Gaussian elements, see Tables 2
and 3. Our method has low memory requirements for wide range of
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Table 2: Memory usage for the methods in Figure 7.

Ours Yan (flat) Yan (curved) Ours (rough)
Shoes scene 36MB 3.2GB 19.3GB 36MB
Kettle scene 36MB 3.4GB 59GB 36MB

Table 3: Pre-processing times of the methods in Figure 7.

Ours Yan (flat) Yan (curved) Ours (rough)
Shoes scene 0.2s 8.2s 56.6s 0.3s
Kettle scene 0.3s 8.4s 241.3s 0.3s

Beckmann flake roughness values, and therefore wide range of bin
resolutions, see Table 4. For higher resolutions the index I takes
more memory, but the trees in the forest F are shallow and take less
memory. For lower resolutions it is the opposite.

7. Conclusion and future work

In this paper, we present a production-ready normal map filtering
method: there are no noticeable pre-computation times, and its mem-
ory requirements are very low. Due to pre-filtering being applied,
our technique does not slow down if large numbers of normal map
texels fall within a single pixel: zooming out from a surface with
glints does not cause performance issues.

The algorithm we propose filters direct illumination. Our filter-
ing solution is based on an Inverse Bin Map: a specialized integral
histogram implementation that enables us to perform the neces-
sary lookups with low memory requirements, and at reasonable
speeds. We believe that this data structure has the potential to re-
place IH in some applications where construction speed, memory
efficiency or regions with arbitrary shapes are important. Extending
the Inverse Bin Map to Gaussian queries would also benefit some
applications[BP19].
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Table 4: The bin resolution and memory usage of our method for
varying Beckmann flake roughness.

Beckmann roughness α 0.0025 0.01 0.04 0.16
Bin resolution b2 9422 2352 592 152

Wing mirror scene (2K) 43MB 37MB 36MB 36MB
Car wheel scene (1K) 15MB 9MB 9MB 8MB

Shoes scene (2K) 40MB 36MB 36MB 36MB
Kettle scene (2K) 42MB 36MB 36MB 36MB
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Figure 7: Shoes and Kettle scenes (800× 800) [ZGJ20]: We render two different texture tiles - the original scenes in the first and third
rows and then ×8 tiles in the second and fourth rows. All of these scenarios were rendered with four variations: our method, Yan et al. flat
elements, Yan et al. curved elements, and our method with slightly increased roughness. The first three variations have equal roughness values
σr = 0.005, while the last demonstrates our method with higher Beckmann flake roughness α = 0.05 (σr =

α√
2

) that is not supported by Yan’s
method. The large images in the left column are rendered with our low roughness variant (the first variant labelled Ours). Two regions of
size 80x80 are selected from both scenes, and convergence plots are computed for each of them (middle and right column). We use the script
provided by Zeltner et al. [ZGJ20] to compute the plots.
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